The Dynamic Interaction Between Matrix Metalloproteinase Activity and Adverse Myocardial Remodeling (original) (raw)
References
Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS. Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 2002;283:H518–H525. PubMed Google Scholar
Brower GL, Henegar JR, Janicki JS. Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol Heart Circ Physiol 1996;271:H2071–H2078. Google Scholar
Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 2001;280:H674–H683. PubMed Google Scholar
Dolgilevich SM, Siri FM, Atlas SA, Eng C. Changes in collagenase and collagen gene expression after induction of aortocaval fistula in rats. Am J Physiol Heart Circ Physiol 2001;281:H207–H214. PubMed Google Scholar
MacKenna DA, Omens JH, McCulloch AD, Covell JW. Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts. Am J Physiol Heart Circ Physiol 1994;266:H1007–H1018. Google Scholar
Chancey AL, Brower GL, Janicki JS. Cardiac mast cellmediated activation of gelatinase and alteration of ventricular diastolic function. Am J Physiol Heart Circ Physiol 2002;282:H2152–H2158. PubMed Google Scholar
Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 2002;105:1983–1988. PubMed Google Scholar
Brower GL, Berry WD, Janicki JS. Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. Circulation 1997;96:I–519. Google Scholar
Janicki JS, Brower GL, Carver WE, Chancey AL, Forman MF, Jobe LJ. Role of mast cells in cardiovascular disease. In: Singal PK, Dixon IMC, Kirshenbaum LA, Dhalla NS, eds. Cardiac Remodeling and Failure. Boston: Kluwer Academic Publishers, 2003:485–499. Google Scholar
Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF, Jr. Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy-Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 1996;148:1639–1648. PubMed Google Scholar
LeWinter MM. Titin: The "missing link" of diastole. J Mol Cell Cardiol 2000;32:2111–2114. PubMed Google Scholar
Heneghan MA, Malone D, Dervan PA. Myocardial collagen network in dilated cardiomyopathy. Morphometry and scanning electron microscopy study. Ir J Med Sci 1991;160:399–401. PubMed Google Scholar
Janicki JS, Brower GL, Henegar JR. Interstitial collagen remodeling in chronic heart failure. Basic Applied Myology 1995;5:339–348. Google Scholar
Yoshikane H, Honda M, Goto Y, Morioka S, Ooshima A, Moriyama K. Collagen in dilated cardiomyopathy: Scanning electron microscopic and immunohistochemical observations. Jpn Circ J 1992;56:899–910. PubMed Google Scholar
Gardner JD, Brower GL, Janicki JS. Gender differences in cardiac remodeling secondary to chronic volume overload. J Card Fail 2002;8:101–107. PubMed Google Scholar
Brower GL, Gardner JD, Janicki JS. Protection from adverse cardiac remodeling induced by chronic volume overload is abolished by ovariectomy. Mol Cell Biochem 2003;251:89–95. PubMed Google Scholar
Liu Z, Hilbelink DR, Crockett WB, Gerdes AM. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 1991;69:52–58. PubMed Google Scholar
Liu Z, Hilbelink DR, Gerdes AM. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 2. Long-term effects. Circ Res 1991;69:59–65. PubMed Google Scholar
GaaschWH. Left ventricular radius towall thickness ratio. Am J Cardiol 1979;43:1189–1194. PubMed Google Scholar
Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975;56:56–64. PubMed Google Scholar
Linzbach AJ. Hypertrophy, hyperplasia and structural dilatation of the human heart. Advanced Cardiol 1976;18: 1–14. Google Scholar
Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988;62:757–765. PubMed Google Scholar
Hara M, Ono K, Hwang MW, Iwasaki A, Okada M, Nakatani K, Sasayama S, Matsumori A. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 2002;195:375–381. PubMed Google Scholar
Stewart JA, Jr., Wei CC, Brower GL, Rynders PE, Hankes GH, Dillon AR, Lucchesi PA, Janicki JS, Dell'Italia LJ. Cardiac mast cell-and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J Mol Cell Cardiol 2003;35:311–319. PubMed Google Scholar
Peterson JT, Hallak H, Johnson L, Li H, O'Brien PM, Sliskovic DR, Bocan TM, Coker ML, Etoh T, Spinale FG. Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 2001;103:2303–2309. PubMed Google Scholar
Peterson JT, Li H, Dillon L, Bryant JW. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 2000;46:307–315. PubMed Google Scholar
Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 1991;260:H1406–H1414. PubMed Google Scholar
Rohde LE, Ducharme A, Arroyo LH, AIkawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 1999;99:3063–3070. PubMed Google Scholar
Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995;147:325–338. PubMed Google Scholar
Volders PG, Willems IE, Cleutjens JP, Arends JW, Havenith MG, Daemen MJ. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 1993;25:1317–1323. PubMed Google Scholar
Engels W, Reiters PHCM, Daemen MJAP, Smits JFM, Van der Vusse GJ. Transmural changes in mast cell density in rat heart after infarct induction in vivo. J Path 1995;177:423–429. PubMed Google Scholar
Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML. Resident cardiac mast cells degranulate and release preformed TNF-α, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 1998;98:699–710. PubMed Google Scholar
Grundemar L, Krstenansky JL, Håkanson R. Neuropeptide Y and truncated neuropeptide Y analogs evoke histamine release from rat peritoneal mast cells. A direct effect on G proteins? Eur J Pharmacol 1994;258:163–166. PubMed Google Scholar
Yamamura H, Nabe T, Kohno S, Ohata K. Endothelin-1, one of the most potent histamine releasers in mouse peritoneal mast cells. Eur J Pharmacol 1994;265:9–15. PubMed Google Scholar
Yoshida H, Inagaki Y, Yamaki K, Beppu Y, Kawashima T, Takagi K. Histamine release induced by human natriuretic peptide from rat peritoneal mast cells. Regul Pept 1996;61:45–49 PubMed Google Scholar
Zhao QE, Mihara T, Sugimoto Y, Kamei C. Mechanism of bradykinin-induced histamine release from rat peritoneal mast cells. Biol Pharm Bull 1996;19:237–240. PubMed Google Scholar
Huang M, Hester RL, Guyton AC. Hemodynamic changes in rats after opening an arteriovenous fistula. Am J Physiol Heart Circ Physiol 1992;262:H846–H851. Google Scholar
Mendez RE, Pfeffer JM, Ortola FV, Bloch KD, Anderson S, Seidman JG, Brenner BM. Atrial natriuretic peptide transcription, storage, and release in rats with myocardial infarction. Am J Physiol 1987;253:H1449–H1455. PubMed Google Scholar
Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol 1998;274:R577–R595. PubMed Google Scholar
Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Cytokine gene expression after myocardial infarction in rat hearts: Possible implication in left ventricular remodeling. Circulation 1998;98:149–156. PubMed Google Scholar
Oral H, Kapadia S, Nakano M, Torre-Amione G, Lee J, Lee-Jackson D, Young JB, Mann DL. Tumor necrosis factor-alpha and the failing human heart. Clin Cardiol 1995;18:IV20–IV27. PubMed Google Scholar
Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: A current perspective. Cardiovasc Res 2002;53:822–830. PubMed Google Scholar
Siwik DA, Chang DL, Colucci WS. Interleukin-1β and tumor necrosis factor-β decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 2000;86:1259–1265. PubMed Google Scholar
Bozkurt B, Kribbs SB, Clubb FJ, Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL. Pathophysiologically relevant concentrations of tumor necrosis factor-β promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998;97:1382–1391. PubMed Google Scholar
Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 2000;97:12746–12751. PubMed Google Scholar
Sivasubramanian N, Coker ML, Kurrelmeyer KM, Maclellan WR, DeMayo FJ, Spinale FG, Mann DL. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2001;104:826–831. PubMed Google Scholar
McGeehan GM, Becherer JD, Bast RCJ, Boyer CM, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S. Regulation of tumour necrosis factoralpha processing by a metalloproteinase inhibitor. Nature 1994;370:558–561. PubMed Google Scholar
Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond AH, Galloway WA, Gilbert R. Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol 1995;57:774–777. PubMed Google Scholar
Li YY, Kadokami T, Wang P, McTiernan CF, Feldman AM. MMP inhibition modulates TNF-alpha transgenic mouse phenotype early in the development of heart failure. Am J Physiol Heart Circ Physiol 2002;282:H983–H989. PubMed Google Scholar
Chou DH, Lee W, McCulloch CA. TNF-alpha inactivation of collagen receptors: Implications for fibroblast function and fibrosis. J Immunol 1996;156:4354–4362. PubMed Google Scholar
Diaz A, Chepenik KP, Korn JH, Reginato AM, Jimenez SA. Differential regulation of cyclooxygenases 1 and 2 by interleukin-1β, tumor necrosis factor-β, and transforming growth factor-β1 in human lung fibroblasts. Experimental Cell Research 1998;241:222–229. PubMed Google Scholar
Gurantz D, Cowling RT, Villarreal FJ, Greenberg BH. Tumor necrosis factor-alpha upregulates angiotensin II type 1 receptors on cardiac fibroblasts. Circ Res 1999;85:272–279. PubMed Google Scholar
Jacobs M, Staufenberger S, Gergs U, Meuter K, Brandstätter K, Hafner M, Ertl G, Schorb W. Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J Mol Cell Cardiol 1999;31:1949–1959. PubMed Google Scholar
Kossakowska AE, Edwards DR, Prusinkiewicz C, Zhang MC, Guo D, Urbanski SJ, Grogan T, Marquez LA, Janowska-Wieczorek A. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin's lymphomas. Blood 1999;94:2080–2089. PubMed Google Scholar
Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 2002;34:233–240. PubMed Google Scholar
Stetson SJ, Perez-Verdia A, MazurW, Farmer JA, Koerner MM, Weilbaecher DG, Entman ML, Quinones MA, Noon GP, Torre-Amione G. Cardiac hypertrophy after transplantation is associated with persistent expression of tumor necrosis factor-alpha. Circulation 2001;104:676–681. PubMed Google Scholar
Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997;95:1247–1252. PubMed Google Scholar
Barton BE. IL-6-like cytokines and cancer cachexia: Consequences of chronic inflammation. Immunol Res 2001;23:41–58. PubMed Google Scholar
Espat NJ, Copeland EM, Moldawer LL. Tumor necrosis factor and cachexia: A current perspective. Surg Oncol 1994;3:255–262. PubMed Google Scholar
Filippatos GS, Tsilias K, Venetsanou K, Karambinos E, Manolatos D, Kranidis A, Antonellis J, Kardaras F, Anthopoulos L, Baltopoulos G. Leptin serum levels in cachectic heart failure patients. Relationship with tumor necrosis factor-alpha system. Int J Cardiol 2000;76:117–122. PubMed Google Scholar
Finck BN, Johnson RW. Anorexia, weight loss and increased plasma interleukin-6 caused by chronic intracerebroventricular infusion of interleukin-1β in the rat. Brain Res 1997;761:333–337. PubMed Google Scholar
Hwang MW, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Hara M, Miyamoto T, Touma M, Sasayama S. Neutralization of interleukin-1β in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J Am Coll Cardiol 2001;38:1546–1553. PubMed Google Scholar