Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato (original) (raw)
- Alpert K. B., Grandillo S. and Tanksley S. D. 1995. fw2.2:a major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theor. Appl. Genet. 91: 994–1000.
Google Scholar - Basten C. J., Weir B. S. and Zeng Z. B. 1997. QTL Cartographer. A reference manual and tutorial for QTL mapping. In: Department of Statistics (Eds.), North Carolina State University, Raleigh, USA.
Google Scholar - Bernacchi D., Beck-Bunn T., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir D. and Tanksley S. D. 1998. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agro-nomic importance from Lycopersicon hirsutum. Theor. Appl. Genet. 97: 381–397.
Google Scholar - Bohner J. and Bangerth F. 1988. Effects of fruit-set sequence and defoliation on cell number, cell size and hormone levels of to-12. mato fruits (Lycopersicon esculentum Mill.) within a truss. Plant Growth Reg. 7: 141–155.
Google Scholar - Bucheli P., Voirol E., de la Torre R., Lopez J., Rytz A., Tanksley S. D. and Pétiard V. 1999. Definition of Nonvolatile Markers for Flavor of Tomato (Lycopersicon esculentum Mill. ) as Tools in Selection and Breeding). J. Agric. Food Chem. 47: 659–664.
Google Scholar - Causse M., Saliba-Colombani V., Lecomte L., Duffé P., Rousselle P. and Buret M. 2002. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53: 2089–2098.
Google Scholar - Causse M., Saliba-Colombani V., Lesschaeve I. and Buret M. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor. Appl. Genet. 102: 273–283.
Google Scholar - Charcosset A., Causse M., Moreau L. and Gallais A. 1995. Inves-tigation into the effect of genetic background on QTL expres-sion using three connected maize recombinant inbred lines (RIL) populations. In: 9th meeting of the EUCARPIA section 'Biometrics in Plant Breeding', pp. 83–89.
- Chen F. Q., Foolad M. R., Hyman J., St. Clair D. A. and Beelaman R. B. 1999. Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum x L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol. Breed. 5: 283–299.
Google Scholar - Darvasi A., Weinreb A., Minke V., Weller J. I. and Soller M. 1993. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943–951.
Google Scholar - Davies J. N. and Hobson G. E. 1981. The constituents of tomato fruit - The influence of environment, nutrition and genotype. Crit. Rev. Food Sci. Nutr. 15: 205–280.
Google Scholar - Eshed Y. and Zamir D. 1996. Less-than-additive epistatic interac-tions of quantitative trait loci in tomato. Genetics 143: 1807–1817.
Google Scholar - Frary A., Nesbitt T. C., Frary A., Grandillo S., van der Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B. and Tanksley S. D. 2000. fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.
Google Scholar - Fridman E., Pleban T. and Zamir D. 2000. A recombination hotspot delimits a wild-species quantitative trait loci for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97: 4718–4723.
Google Scholar - Fulton T. M., Beck-Bunn T., Emmatty D., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir D. and Tanksley S. D. 1997. QTL analy-sis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor. Appl. Genet. 95: 881–894.
Google Scholar - Fulton T. M., Bucheli P., Voirol E., Lopez J., Pétiard V. and Tanksley S. D. 2002. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contrib-uting to flavor, identified in four advanced backcross populations of tomato. Euphytica 163: 163–177.
Google Scholar - Fulton T. M., Chunwongse J. and Tanksley S. D. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207–209.
Google Scholar - Ganal M. W., Czihal R., Hannappel U., Kloos D.-U., Polley A. and Ling H.-Q. 1998. Sequencing of cDNA Clones from the Genetic Map of Tomato (Lycopersicon esculentum). Genome Res. 8: 842–847.
Google Scholar - Goldman I., Paran I. and Zamir D. 1995. Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum x Lycopersicon cheesmanii cross. Theor. Appl. Genet. 90: 925–932.
Google Scholar - Grandillo S., Ku H. M. and Tanksley S. D. 1996. Characterization of fs8. 1, a major QTL influencing fruit shape in tomato. Mol. Breed. 2: 251–260.
Google Scholar - Grandillo S., Ku H. M. and Tanksley S. D. 1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99: 978–987.
Google Scholar - Grandillo S. and Tanksley S. D. 1996. QTL analysis of horticultural traits differentiating the cultivated tomato from the closely re-lated species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92: 935–951.
Google Scholar - Hobson G. E., Gough C. and Townley C. 1990. Measuring consumer reaction to the flavour of fresh tomatoes. Acta Hortic 259: 107–116.
Google Scholar - Jones R. A. and Scott S. J. 1983. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32: 845–855.
Google Scholar - Kosambi D. D. 1944. The estimation of map distances from recom-bination values. Ann Eugen 12: 172–175.
Google Scholar - Lander E. S., Green P., Abrahamson J., Barlox A., Daly M. J., Lincoln S. E. and Newburg L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.
Google Scholar - Lincoln S. E., Daly M. J. and Lander E. S. 1992. Constructing ge-netic maps with MAPMAKER/EXP version 3. 0. (1992).
- Lippman Z. and Tanksley S. D. 2001. Dissecting the genetic path-way to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158: 413–422.
Google Scholar - MacArthur J. W. 1934. Fruit size effects of qualitative genes in the tomato. Am. Nat. 58: 73–74.
Google Scholar - Monforte A. J. and Tanksley S. D. 2000. Fine mapping of a quanti-tative trait locus (QTL) from Lycopersicon hirsutum chromo-some 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dis-section of heterosis for yield. Theor. Appl. Genet. 100: 471–479.
Google Scholar - Nesbitt T. C. and Tanksley S. D. 2002. Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162: 365–379.
Google Scholar - Paran I., Goldman I., Tanksley S. D. and Zamir D. 1995. Recom-binant inbred lines for genetic mapping in tomato. Theor. Appl. Genet. 90: 542–548.
Google Scholar - Paterson A. H., de Verna J. W., Lanini B. and Tanksley S. D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735–742.
Google Scholar - Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E. and Tanksley S. D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restric-tion fragment length polymorphisms. Nature 335: 721–726.
Google Scholar - Petro-Turza M. 1987. Flavor of tomato and tomato products. Food Rev. Int. 2: 309–351.
Google Scholar - Rick C. M. 1974. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgar-dia 42: 493–510.
Google Scholar - Rozen S. and Skaletsky H. J. 1998. Primer3. Code available at http://www-genome. wi. mit. edu/genome_software/other/primer3. html.
- Saliba-Colombani V., Causse M., Gervais L. and Philouze J. 2000. Efficiency of AFLP, RAPD and RFLP markers for the construc-tion of an intraspecific map of the tomato genome. Genome 43: 29–40.
Google Scholar - Saliba-Colombani V., Causse M., Langlois D., Philouze J. and Buret M. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor. Appl. Genet. 102: 259–272.
Google Scholar - SAS Institute 1988. SAS users guide: statistics. In: SAS Institute (Eds.), Cary, North Carolina, USA.
Google Scholar - Sawhney V. K. and Greyson R. I. 1972. Fruit-size increase in tomato following application of gibberellic acid. J. Am. Soc. Hortic Sci. 97: 589–590.
Google Scholar - SCAR Agro-Food Tomato Working Group 1991. Measurement of the quality of tomatoes: recommendations of an EEC working group. In: Eccher Zerbini P., Gorini F., Polesello A. (Eds).,I. V. T. P. A., Milano.
Google Scholar - Splus 1993. Splus guide to statistical and mathematical analyses. In: Mathsoft (ed.), Seattle, Washington, USA.
Google Scholar - Stevens M. A. 1986. Inheritance of tomato fruit quality components. Plant Breed. Rev. 4: 273–311.
Google Scholar - Stevens M. A., Kadre A. A. and Albright M. 1979. Potential for in-creasing tomato flavor via sugar and acid contents. J. Am. Soc. Hortic Sci. 104: 40–42.
Google Scholar - Takahashi Y., Shomura A., Sasaki T. and Yano M. 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the-subunit of protein CK2. Proc. Natl. Acad. Sci. USA 98: 7922–7927.
Google Scholar - Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonier-bale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B., Messeguer R., Miller J. C., Miller L., Paterson A. H., Pineda O., Röder M. S., Wing R. A., Wu W. and Young N. D. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 141–1160.
Google Scholar - Tuinstra M. R., Ejeta G. and Goldsbrough P. B. 1997. Heteroge-neous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95: 1005–1011.
Google Scholar - Wood M. 1992. Solid future for tomatoes. Agric. Res. 40: 4–5.
Google Scholar - Yano M., Harushima Y., Nagamura Y., Kurata N., Minobe Y. and Sasaki T. 1997. Identification of quantitative trait loci control-ling heading date in rice using a high-density linkage map. Theor. Appl. Genet. 95: 1025–1032.
Google Scholar - Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., Yamamoto K., Umehara Y., Nagamura Y. and Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantita-tive trait locus in rice, is closely related to the Arabidopsis flow-ering time gene CONSTANS. Plant Cell. 12: 2473–2484.
Google Scholar - Yeager A. F. 1973. Studies on the inheritance and development of fruit size and shape in the tomato. J Agric Res 55: 141–152.
Google Scholar - Yousef G. G., Juvik J. A. 2001. Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that en-hances cultivated tomato soluble solids. Theor. Appl. Genet. 103: 1022–1027.
Google Scholar - Zeng Z. B. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90: 10972–10976.
Google Scholar - Zeng Z. B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.
Google Scholar