Structure-Immunogenicity Relationships of Therapeutic Proteins (original) (raw)
- G. Schernthaner. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care 16:155-165 (1993).
Google Scholar - G. Walsh. Pharmaceutical biotechnology products approved within the European Union. Eur. J. Pharm. Biopharm. 55:3-10 (2003).
Google Scholar - F. Adair and D. Ozanne. The immunogenicity of therapeutic proteins. BioPharm February:30-36 (2002).
Google Scholar - H. F. Bunn. Drug-induced autoimmune red-cell aplasia. N. Engl. J. Med. 346:522-523 (2002).
Google Scholar - N. Casadevall, J. Nataf, B. Viron, A. Kolta, J. J. Kiladjian, P. Martin-Dupont, P. Michaud, T. Papo, V. Ugo, I. Teyssandier, B. Varet, and P. Mayeux. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346:469-475 (2002).
Google Scholar - S. K. Gershon, H. Luksenburg, T. R. Cote, and M. M. Braun. Pure red-cell aplasia and recombinant erythropoietin. N. Engl. J. Med. 346:1584-1586 (2002).
Google Scholar - M. F. Bachmann, U. H. Rohrer, T. M. Kundig, K. Burki, H. Hengartner, and R. M. Zinkernagel. The influence of antigen organization on B cell responsiveness. Science 262:1448-1451 (1993).
Google Scholar - N. R. Pritchard and K. G. Smith. B cell inhibitory receptors and autoimmunity. Immunology 108:263-273 (2003).
Google Scholar - B. Chackerian, P. Lenz, D. R. Lowy, and J. T. Schiller. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol. 169:6120-6126 (2002).
Google Scholar - F. Matesanz and A. Alcina. Induction of autoantibodies to different interleukin-2 allotypes. J. Autoimmun. 12:221-227 (1999).
Google Scholar - M. Van Ghelue, U. Moens, S. Bendiksen, and O. P. Rekvig. Autoimmunity to nucleosomes related to viral infection: a focus on hapten-carrier complex formation. J. Autoimmun. 20:171-182 (2003).
Google Scholar - J. L. Ottesen, P. Nilsson, J. Jami, D. Weilguny, M. Duhrkop, D. Bucchini, S. Havelund, and J. M. Fogh. The potential immunogenicity of human insulin and insulin analogues evaluated in a transgenic mouse model. Diabetologia 37:1178-1185 (1994).
Google Scholar - A. V. Palleroni, A. Aglione, M. Labow, M. J. Brunda, S. Pestka, F. Sinigaglia, G. Garotta, J. Alsenz, and A. Braun. Interferon immunogenicity: preclinical evaluation of interferon-alpha 2a. J. Interferon Cytokine Res. 17:S23-S27 (1997).
Google Scholar - T. A. Stewart, P. G. Hollingshead, S. L. Pitts, R. Chang, L. E. Martin, and H. Oakley. Transgenic mice as a model to test the immunogenicity of proteins altered by site-specific mutagenesis. Mol. Biol. Med. 6:275-281 (1989).
Google Scholar - C. M. Zwickl, K. S. Cocke, R. N. Tamura, L. M. Holzhausen, G. T. Brophy, P. H. Bick, and D. Wierda. Comparison of the immunogenicity of recombinant and pituitary human growth hormone in rhesus monkeys. Fundam. Appl. Toxicol. 16:275-287 (1991).
Google Scholar - A. Braun, L. Kwee, M. A. Labow, and J. Alsenz. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm. Res. 14:1472-1478 (1997).
Google Scholar - M. Brickelmaier, P. S. Hochman, R. Baciu, B. Chao, J. H. Cuervo, and A. Whitty. ELISA methods for the analysis of antibody responses induced in multiple sclerosis patients treated with recombinant interferon-beta. J. Immunol. Methods 227:121-135 (1999).
Google Scholar - E. Hochuli. Interferon immunogenicity: technical evaluation of interferon-alpha 2a. J. Interferon Cytokine Res. 17:S15-S21 (1997).
Google Scholar - P. Fireman, S. E. Fineberg, and J. A. Galloway. Development of IgE antibodies to human (recombinant DNA), porcine, and bovine insulins in diabetic subjects. Diabetes Care 5:119-125 (1982).
Google Scholar - S. E. Fineberg, J. A. Galloway, and N. S. Fineberg. J. Goldman. Effects of species of origin purification levels and formulation on insulin immunogenicity. Diabetes 32:592-599 (1983).
Google Scholar - X. Du and J. G. Tang. Effects of deleting A19 tyrosine from insulin. Biochem. Mol. Biol. Int. 44:507-513 (1998).
Google Scholar - H. Lis and N. Sharon. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem. 218:1-27 (1993).
Google Scholar - C. F. Goochee and T. Monica. Environmental effects on protein glycosylation. Biotechnology (N Y) 8:421-427 (1990).
Google Scholar - J. G. Gribben, S. Devereux, N. S. Thomas, M. Keim, H. M. Jones, A. H. Goldstone, and D. C. Linch. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet 335:434-437 (1990).
Google Scholar - G. R. Adolf, I. Kalsner, H. Ahorn, I. Maurer-Fogy, and K. Cantell. Natural human interferon-alpha 2 is O-glycosylated. Biochem. J. 276:511-518 (1991).
Google Scholar - P. Kontsek, H. Liptakova, and E. Kontsekova. Immunogenicity of interferon-alpha 2 in therapy: structural and physiological aspects. Acta Virol. 43:63-70 (1999).
Google Scholar - C. B. Colby, M. Inoue, M. Thompson, and Y. H. Tan. Immunologic differentiation between E. coli and CHO cell-derived recombinant and natural human beta-interferons. J. Immunol. 133:3091-3095 (1984).
Google Scholar - D. Bhadra, S. Bhadra, P. Jain, and N. K. Jain. Pegnology: a review of PEG-ylated systems. Pharmazie 57:5-29 (2002).
Google Scholar - F. F. Davis. The origin of pegnology. Adv. Drug Deliv. Rev. 54:457-458 (2002).
Google Scholar - F. M. Veronese. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405-417 (2001).
Google Scholar - K. Rajender Reddy, M. W. Modi, and S. Pedder. Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Rev. 54:571-586 (2002).
Google Scholar - C. M. Perry and B. Jarvis. Peginterferon-alpha-2a (40 kD): a review of its use in the management of chronic hepatitis C. Drugs 61:2263-2288 (2001).
Google Scholar - K. D. Hinds and S. W. Kim. Effects of PEG conjugation on insulin properties. Adv. Drug Deliv. Rev. 54:505-530 (2002).
Google Scholar - D. C. Robbins, S. M. Cooper, S. E. Fineberg, and P. M. Mead. Antibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients. Diabetes 36:838-841 (1987).
Google Scholar - J. C. Ryff. Clinical investigation of the immunogenicity of interferon-alpha 2a. J. Interferon Cytokine Res. 17:S29-S33 (1997).
Google Scholar - W. V. Moore and P. Leppert. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrinol. Metab. 51:691-697 (1980).
Google Scholar - M. Xie and R. L. Schowen. Secondary structure and protein deamidation. J. Pharm. Sci. 88:8-13 (1999).
Google Scholar - M. C. Lai and E. M. Topp. Solid-state chemical stability of proteins and peptides. J. Pharm. Sci. 88:489-500 (1999).
Google Scholar - J. L. Cleland, M. F. Powell, and S. J. Shire. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307-377 (1993).
Google Scholar - H. T. Wright. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng. 4:283-294 (1991).
Google Scholar - W. Chen, N. J. Ede, D. C. Jackson, J. McCluskey, and A. W. Purcell. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design. J. Immunol. 157:1000-1005 (1996).
Google Scholar - H. Schellekens. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 1:457-462 (2002).
Google Scholar - R. E. Chance, E. P. Kroeff, J. A. Hoffmann, and B. H. Frank. Chemical, physical, and biologic properties of biosynthetic human insulin. Diabetes Care 4:147-154 (1981).
Google Scholar