Regulation of Mouse Mammary Gland Development and Tumorigenesis by the ERBB Signaling Network (original) (raw)
REFERENCES
D. J. Riese, 2nd, and D. F. Stern (1998). Specificity within the EGFfamily/ErbB receptor family signaling network. Bioessays20:41–48. Google Scholar
L. N. Klapper, M. H. Kirschbaum, M. Sela, and Y. Yarden (2000). Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res.77:25–79. Google Scholar
D. C. Lee, E. A. Berkowitz, and M. A. Hissong (1995). Transforming growth factor-α: Expression, regulation and biological activities. Pharm. Rev.47:51–85. Google Scholar
E. Peles and Y. Yarden (1993). Neu and its ligands: From an oncogene to neural factors. Bioessays15:815–824. Google Scholar
K. L. Carraway, 3rd, J. L. Weber, M. J. Unger, J. Ledesma, N. Yu, M. Gassmann, and C. Lai (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature387:512–516. Google Scholar
H. Chang, D. J. Riese, 2nd, W. Gilbert, D. F. Stern, and U. J. McMahan (1997). Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature387:509–512. Google Scholar
D. Harari, E. Tzahar, J. Romano, M. Shelly, J. H. Pierce, G. C. Andrews, and Y. Yarden (1999). Neuregulin-4:Anovel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene18:2681–2689. Google Scholar
D. J. Riese, 2nd, Y. Bermingham, T. M. van Raaij, S. Buckley, G. D. Plowman, and D. F. Stern (1996). Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-β. Oncogene12:345–353. Google Scholar
K. Elenius, S. Paul, G. Allison, J. Sun, and M. Klagsbrun (1997). Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J.16:1268–1278. Google Scholar
T. Komurasaki, H. Toyoda, D. Uchida, and S. Morimoto (1997). Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene15:2841–2848. Google Scholar
R. Pinkas-Kramarski, M. Shelly, S. Glathe, B. J. Ratzkin, and Y. Yarden (1996). Neu differentiation factor/neuregulin isoforms activate distinct receptor combinations. J. Biol. Chem.271:19029–19032. Google Scholar
E. Tzahar, H. Waterman, X. Chen, G. Levkowitz, D. Karunagaran, S. Lavi, B. J. Ratzkin, and Y. Yarden (1996). A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell Biol.16:5276–5287. Google Scholar
J. A. Schroeder, and D. C. Lee (1998). Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ.9:451–464. Google Scholar
J. Sebastian, M. P. Walker, J. F. Wiesen, Z. Werb, R. Derynck, Y. K. Horn, G. R. Cunha and R. P. DiAugustine (1998). Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ.9:777–785. Google Scholar
K. M. Darcy, D. Zangani, A. L. Wohlhueter, R.Y. Huang, M.M. Vaughan, J. A. Russell, and M. M. Ip (2000). Changes in ErbB2 (her-2/neu), ErbB3, and ErbB4 during growth, differentiation, and apoptosis of normal rat mammary epithelial cells. J. Histochem. Cytochem.48:63–80. Google Scholar
J. F. Wiesen, P. Young, Z. Werb, and G. R. Cunha (1999). Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development126:335–344. Google Scholar
W. Xie, A. J. Paterson, E. Chin, L. M. Nabell, and J. E. Kudlow (1997). Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol. Endocrinol.11:1766–1781. Google Scholar
N. C. Luetteke, H. K. Phillips, T. H. Qiu, N. G. Copeland, H. S. Earp, N. A. Jenkins, and D. C. Lee (1994). The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev.8:399–413. Google Scholar
B. K. Vonderhaar (1987). Local effects of EGF, alpha-TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary gland in vivo. J. Cell Physiol.132:581–584. Google Scholar
S. Coleman, G. B. Silberstein, and C.W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev. Biol.127:304–315. Google Scholar
F. E. Jones, D. J. Jerry, B. C. Guarino, G. C. Andrews, and D. F. Stern (1996). Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ.7:1031–1038. Google Scholar
N. J. Kenney, G. H. Smith, K. Rosenberg, M. L. Cutler, and R. B. Dickson (1996). Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ.7:1769–1781. Google Scholar
N. C. Luetteke, T. H. Qiu, S. E. Fenton, K. L. Troyer, R. F. Riedel, A. Chang, and D. C. Lee (1999). Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development126:2739–2750. Google Scholar
C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland, In M. C. Neville and C.W. Daniel (eds. ), The Mammary Gland: Development, Regulation and Function, Plenum Press, New York, pp. 3–46. Google Scholar
R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol. Endocrinol.11:801–811. Google Scholar
V. R. Mukku and G. M. Stancel (1985). Regulation of epidermal growth factor receptor by estrogen. J. Biol. Chem.260:9820–9824. Google Scholar
V. R. Mukku and G. M. Stancel (1985). Receptors for epidermal growth factor in the rat uterus. Endocrinology117:149–154. Google Scholar
R. P. DiAugustine, P. Petrusz, G. I. Bell, C. F. Brown, K. S. Korach, J. A. McLachlan, and C. T. Teng (1988). Influence of estrogens on mouse uterine epidermal growth factor precursor protein and messenger ribonucleic acid. Endocrinology122:2355–2363. Google Scholar
K. G. Nelson, Y. Sakai, B. Eitzman, T. Steed, and J. McLachlan (1994). Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes. Cell Growth Differ.5:595–606. Google Scholar
Y. Sakai, K.G. Nelson, S. Snedeker, N. L. Bossert, M. P. Walker, J. McLachlan, and R. P. DiAugustine (1994). Expression of epidermal growth factor in suprabasal cells of stratified squamous epithelia: Implications for a role in differentiation. Cell Growth Differ.5:527–535. Google Scholar
R. P. DiAugustine, R. G. Richards, and J. Sebastian (1997). EGF-related peptides and their receptors in mammary gland development. J. Mam. Gland Biol. Neoplasia2:109–117. Google Scholar
J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano (1995). Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci.108:413–430. Google Scholar
J. M. Carroll, N. C. Luetteke, D. C. Lee, and F. M. Watt (1998). Role of integrins in mouse eyelid development: Studies in normal embryos and embryos in which there is a failure of eyelid fusion. Mech. Dev.78:37–45. Google Scholar
J. P. Witty, J. H. Wright, and L. M. Matrisian (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol. Biol. Cell6:1287–303. Google Scholar
S. B. Kondapaka, R. Fridman, and K. B. Reddy (1997). Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int. J. Cancer70:722–726. Google Scholar
P. Sundareshan, R. B. Nagle, and G. T. Bowden (1999). EGF induces the expression of matrilysin in the human prostate adenocarcinoma cell line, LNCaP. Prostate40:159–166. Google Scholar
O. c. P, H. Modjtahedi, P. Rhys-Evans, W. J. Court, G. M. Box, and S. A. Eccles (2000). Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res.60:1121–1128. Google Scholar
E. P. Sandgren, J. A. Schroeder, T.H. Qui, R.D. Palmiter, R. L. Brinster, and D. C. Lee (1995). Inhibition of mammary gland involution is associated with transforming growth factor α but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res. **55:**3915–3927. Google Scholar
K. J. Fowler, F. Walker, W. Alexander, M. L. Hibbs, E. C. Nice, R. M. Bohmer, G. B. Mann, C. Thumwood, R. Maglitto, J. A. Danks, R. Chetty, A. W. Burgess, and A. R. Dunn (1995). A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc. Natl. Acad. Sci. U.S.A.92:1465–1469. Google Scholar
Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol.131:215–226. Google Scholar
F. E. Jones and D. F. Stern (1999). Expression of dominantnegative ErbB2 in the mammary gland of transgenic mice reveals a role in lobuloalveolar development and lactation. Oncogene18:3481–3490. Google Scholar
F. E. Jones, T. Welte, X. Y. Fu, and D. F. Stern (1999). ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J. Cell Biol.147:77–88. Google Scholar
J. A. Schroeder and D. C. Lee (1997). Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia. J. Mam. Gland Biol. Neoplasia2:119–129. Google Scholar
Y. Matsui, S. A. Halter, J. T. Holt, B. L. Hogan, and R. J. Coffey (1990). Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell61:1147–1155. Google Scholar
S. Sakai, M. Mizuno, T. Harigaya, K. Yamamoto, T. Mori, R. J. Coffey, and H. Nagasawa (1994). Cause of failure of lactation in mouse mammary tumor virus/human transforming growth factor α transgenic mice. Proc. Soc. Exp. Biol. Med.205:236–242. Google Scholar
R. C. Humphreys and L. Hennighausen (1999). Signal transducer and activator of transcription 5a influences mammary epithelial cell survival and tumorigenesis. Cell Growth Differ.10:685–694. Google Scholar
R. C. Humphreys and L. Hennighausen (2000). Transforming growth factor α and mouse models of human breast cancer. Oncogene19:1085–1091. Google Scholar
L. T. Amundadottir, M. D. Johnson, G. Merlino, G. H. Smith, and R. B. Dickson (1995). Synergistic interaction of transforming growth factor α and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ6:737–748. Google Scholar
D. F. Stern, A. B. Roberts, N. S. Roche, M. B. Sporn, and R. A. Weinberg (1986). Differential responsiveness of myc-and rastransfected cells to growth factors: Selective stimulation of myctransfected cells by epidermal growth factor. Mol. Cell Biol.6:870–877. Google Scholar
D. J. Liao, G. Natarajan, S. L. Deming, M. H. Jamerson, M. Johnson, G. Chepko, and R. B. Dickson (2000). Cell cycle basis for the onset and progression of c-Myc-induced, TGFα enhanced mouse mammary gland carcinogenesis. Oncogene19:1307–1317. Google Scholar
A. Philipp, A. Schneider, I. Vasrik, K. Finke, Y. Xiong, D. Beach, K. Alitalo, and M. Eilers (1994). Repression of cyclin D1: A novel function of MYC. Mol. Cell Biol.14:4032–4043. Google Scholar
J. A. Schroeder, K. L. Troyer, and D. C. Lee (2000). Cooperative induction of mammary tumorigenesis by TGFα and Wnts. Oncogene19:3193–3199. Google Scholar
M. A. Simon (2000). Receptor tyrosine kinases: Specific outcomes from general signals. Cell103:13–15. Google Scholar
R. Brandt, R. Eisenbrandt, F. Leenders, W. Zschiesche, B. Binas, C. Juergensen, and F. Theuring (2000). Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation. Oncogene19:2129–2137. Google Scholar
I. L. Andrulis, S. B. Bull, M. E. Blackstein, D. Sutherland, C. Mak, S. Sidlofsky, K. P. Pritzker, R. W. Hartwick, W. Hanna, L. Lickley, R. Wilkinson, A. Qizilbash, U. Ambus, M. Lipa, H. Weizel, A. Katz, M. Baida, S. Mariz, G. Stoik, P. Dacamara, D. Strongitharm, W. Geddie, and D. McCready (1998). neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J. Clin. Oncol.16:1340–1349. Google Scholar
J. S. Ross and J. A. Fletcher (1999). The HER-2/neu oncogene: Prognostic factor, predictive factor and target for therapy. Semin. Cancer Biol.9:125–138. Google Scholar
H. Kim and W. J. Muller (1999). The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res.253:78–87. Google Scholar
M. P. DiGiovanna, M. A. Lerman, R. J. Coffey, W. J. Muller, R. D. Cardiff, and D. F. Stern (1998). Active signaling by Neu in transgenic mice. Oncogene17:1877–1884. Google Scholar
E. R. Andrechek, W. R. Hardy, P. M. Siegel, M. A. Rudnicki, R. D. Cardiff, and W. J. Muller (2000). Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl. Acad. Sci. U.S.A.97:3444–3449. Google Scholar
P. M. Siegel, D. L. Dankort, W. R. Hardy, and W. J. Muller (1994). Novel activating mutations in the neu protooncogene involved in induction of mammary tumors. Mol. Cell Biol.14:7068–7077. Google Scholar
P. M. Siegel and W. J. Muller (1996). Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc. Natl. Acad. Sci. U.S.A.93:8878–8883. Google Scholar
P. M. Siegel, E. D. Ryan, R. D. Cardiff, and W. J. Muller (1999). Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: Implications for human breast cancer. EMBO J.18:2149–2164. Google Scholar
K. Y. Kwong and M. C. Hung (1998). A novel splice variant of HER2 with increased transformation activity. Mol. Carcinogensis23:62–68. Google Scholar
C. M. Quinn, J. L. Ostrowski, S. A. Lane, D. P. Loney, J. Teasdale, and F. A. Benson (1994). c-erbB-3 protein expression in human breast cancer: Comparison with other tumor variables and survival. Histopathology25:247–252. Google Scholar
B. Bodey, B. Bodey, Jr., A. M. Groger, J. V. Luck, S. E. Siegel, C. R. Taylor, and H. E. Kaiser (1997). Clinical and prognostic significance of the expression of the c-erbB-2 and c-erbB-3 oncoproteins in primary and metastatic malignant melanomas and breast carcinomas. Anticancer Res.17:1319–1330. Google Scholar
M. Alimandi, A. Romano, M.C. Curia, R. Muraro, P. Fedi, S. A. Aaronson, P. P. Di Fiore, and M. H. Kraus (1995). Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene10:1813–1821. Google Scholar
C. Wallasch, F. U. Weiss, G. Niederfellner, B. Jallal, W. Issing, and A. Ullrich (1995). Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J.14:4267–4275. Google Scholar
K. Zhang, J. Sun, N. Liu, D. Wen, D. Chang, A. Thomason, and S. K. Yoshinaga (1996). Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J. Biol. Chem.271:3884–3890. Google Scholar
T. G. Ram, M. E. Schelling, and H. L. Hosick (2000). Blocking HER-2/HER-3 function with a dominant negative form of HER-3 in cells stimulated by heregulin and in breast cancer cells with HER-2 gene amplification. Cell Growth Differ.11:173–183. Google Scholar
W. J. Muller, C. L. Arteaga, S. K. Muthuswamy, P. M. Siegel, M. A. Webster, R. D. Cardiff, K. S. Meise, F. Li, S. A. Halter, and R. J. Coffey (1996). Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell Biol.16:5726–5736. Google Scholar
A. E. Lenferink, J. F. Simpson, L. K. Shawver, R. J. Coffey, J. T. Forbes, and C. L. Arteaga (2000). Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu C MMTV/TGF-α bigenic mice [In Process Citation]. Proc. Natl. Acad. Sci. U.S.A.97:9609–9614. Google Scholar
L. T. Amundadottir and P. Leder (1998). Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene16:737–746. Google Scholar
G. J. Rowse, S. R. Ritland, and S. J. Gendler (1998). Genetic modulation of neu protooncogene-induced mammary tumorigenesis. Cancer Res.58:2675–2679. Google Scholar
J. A. Engelman, R. J. Lee, A. Karnezis, D. J. Bearss, M. Webster P. Siegel, W. J. Muller, J. J. Windle, R. G. Pestell, and M. P. Lisanti (1998). Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications forhumanbreast cancer. J. Biol. Chem.273:20448–20455. Google Scholar
B. Li, J. M. Rosen, J. McMenamin-Balano, W. J. Muller, and A. S. Perkins (1997). neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol. Cell Biol.17:3155–3163. Google Scholar
E. Horak, K. Smith, L. Bromley, S. LeJeune, M. Greenall, D. Lane, and A. L. Harris (1991). Mutant p53, EGF receptor and c-erbB-2 expression in human breast cancer. Oncogene6:2277–2284. Google Scholar
R. J. Lee, C. Albanese, M. Fu, M. D'Amico, B. Lin, G. Watanabe, G. K. Haines, 3rd, P. M. Siegel, M. C. Hung, Y. Yarden, J. M. Horowitz, W. J. Muller, and R. G. Pestell (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol. Cell. Biol.20:672–683. Google Scholar
I. M. Krane and P. Leder (1996). NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene12:1781–1788. Google Scholar
T. L. Burgess, S. L. Ross, Y. X. Qian, D. Brankow, and S. Hu (1995). Biosynthetic processing of neu differentiation factor. Glycosylation trafficking, and regulated cleavage from the cell surface. J. Biol. Chem.270:19188–19196. Google Scholar
E. J. Weinstein, S. Grimm, and P. Leder (1998). The oncogene heregulin induces apoptosis in breast epithelial cells and tumors. Oncogene17:2107–2113. Google Scholar
E. J. Weinstein and P. Leder (2000). The extracellular region of heregulin is sufficient to promote mammary gland proliferation and tumorigenesis but not apoptosis. Cancer Res.60:3856–3861. Google Scholar
X. Z. Wang, E.M. Jolicoeur, N. Conte, M. Chaffanet, Y. Zhang, M. J. Mozziconacci, H. Feiner, D. Birnbaum, M. J. Pebusque, and D. Ron(1999). γ-heregulin is the product of a chromosomal translocation fusing the DOC4 and HGL/NRG1 genes in the MDA-MB-175 breast cancer cell line. Oncogene18:5718–5721. Google Scholar
J. R. Zabrecky, T. Lam, S. J. McKenzie, and W. Carney (1991). The extracellular domain of p185/neu is released from the surface of human breast carcinoma cells, SK-BR-3. J. Biol. Chem.266:1716–1720. Google Scholar
R. Srinivasan, R. Poulsom, H.C. Hurst, and W. J. Gullick (1998). Expression of the c-erbB-4/HER4 protein and mRNA in normal human fetal and adult tissues and in a survey of nine solid tumor types. J. Pathol.185:236–245. Google Scholar