Regulation of Mouse Mammary Gland Development and Tumorigenesis by the ERBB Signaling Network (original) (raw)

REFERENCES

  1. D. J. Riese, 2nd, and D. F. Stern (1998). Specificity within the EGFfamily/ErbB receptor family signaling network. Bioessays 20:41–48.
    Google Scholar
  2. L. N. Klapper, M. H. Kirschbaum, M. Sela, and Y. Yarden (2000). Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. 77:25–79.
    Google Scholar
  3. D. C. Lee, E. A. Berkowitz, and M. A. Hissong (1995). Transforming growth factor-α: Expression, regulation and biological activities. Pharm. Rev. 47:51–85.
    Google Scholar
  4. E. Peles and Y. Yarden (1993). Neu and its ligands: From an oncogene to neural factors. Bioessays 15:815–824.
    Google Scholar
  5. K. L. Carraway, 3rd, J. L. Weber, M. J. Unger, J. Ledesma, N. Yu, M. Gassmann, and C. Lai (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 387:512–516.
    Google Scholar
  6. H. Chang, D. J. Riese, 2nd, W. Gilbert, D. F. Stern, and U. J. McMahan (1997). Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 387:509–512.
    Google Scholar
  7. D. Harari, E. Tzahar, J. Romano, M. Shelly, J. H. Pierce, G. C. Andrews, and Y. Yarden (1999). Neuregulin-4:Anovel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene 18:2681–2689.
    Google Scholar
  8. D. J. Riese, 2nd, Y. Bermingham, T. M. van Raaij, S. Buckley, G. D. Plowman, and D. F. Stern (1996). Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-β. Oncogene 12:345–353.
    Google Scholar
  9. K. Elenius, S. Paul, G. Allison, J. Sun, and M. Klagsbrun (1997). Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J. 16:1268–1278.
    Google Scholar
  10. T. Komurasaki, H. Toyoda, D. Uchida, and S. Morimoto (1997). Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 15:2841–2848.
    Google Scholar
  11. R. Pinkas-Kramarski, M. Shelly, S. Glathe, B. J. Ratzkin, and Y. Yarden (1996). Neu differentiation factor/neuregulin isoforms activate distinct receptor combinations. J. Biol. Chem. 271:19029–19032.
    Google Scholar
  12. E. Tzahar, H. Waterman, X. Chen, G. Levkowitz, D. Karunagaran, S. Lavi, B. J. Ratzkin, and Y. Yarden (1996). A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell Biol. 16:5276–5287.
    Google Scholar
  13. J. A. Schroeder, and D. C. Lee (1998). Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ. 9:451–464.
    Google Scholar
  14. J. Sebastian, M. P. Walker, J. F. Wiesen, Z. Werb, R. Derynck, Y. K. Horn, G. R. Cunha and R. P. DiAugustine (1998). Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ. 9:777–785.
    Google Scholar
  15. K. M. Darcy, D. Zangani, A. L. Wohlhueter, R.Y. Huang, M.M. Vaughan, J. A. Russell, and M. M. Ip (2000). Changes in ErbB2 (her-2/neu), ErbB3, and ErbB4 during growth, differentiation, and apoptosis of normal rat mammary epithelial cells. J. Histochem. Cytochem. 48:63–80.
    Google Scholar
  16. J. F. Wiesen, P. Young, Z. Werb, and G. R. Cunha (1999). Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126:335–344.
    Google Scholar
  17. W. Xie, A. J. Paterson, E. Chin, L. M. Nabell, and J. E. Kudlow (1997). Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol. Endocrinol. 11:1766–1781.
    Google Scholar
  18. N. C. Luetteke, H. K. Phillips, T. H. Qiu, N. G. Copeland, H. S. Earp, N. A. Jenkins, and D. C. Lee (1994). The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 8:399–413.
    Google Scholar
  19. B. K. Vonderhaar (1987). Local effects of EGF, alpha-TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary gland in vivo. J. Cell Physiol. 132:581–584.
    Google Scholar
  20. S. Coleman, G. B. Silberstein, and C.W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev. Biol. 127:304–315.
    Google Scholar
  21. F. E. Jones, D. J. Jerry, B. C. Guarino, G. C. Andrews, and D. F. Stern (1996). Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ. 7:1031–1038.
    Google Scholar
  22. N. J. Kenney, G. H. Smith, K. Rosenberg, M. L. Cutler, and R. B. Dickson (1996). Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ. 7:1769–1781.
    Google Scholar
  23. N. C. Luetteke, T. H. Qiu, S. E. Fenton, K. L. Troyer, R. F. Riedel, A. Chang, and D. C. Lee (1999). Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750.
    Google Scholar
  24. C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland, In M. C. Neville and C.W. Daniel (eds. ), The Mammary Gland: Development, Regulation and Function, Plenum Press, New York, pp. 3–46.
    Google Scholar
  25. R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol. Endocrinol. 11:801–811.
    Google Scholar
  26. V. R. Mukku and G. M. Stancel (1985). Regulation of epidermal growth factor receptor by estrogen. J. Biol. Chem. 260:9820–9824.
    Google Scholar
  27. V. R. Mukku and G. M. Stancel (1985). Receptors for epidermal growth factor in the rat uterus. Endocrinology 117:149–154.
    Google Scholar
  28. R. P. DiAugustine, P. Petrusz, G. I. Bell, C. F. Brown, K. S. Korach, J. A. McLachlan, and C. T. Teng (1988). Influence of estrogens on mouse uterine epidermal growth factor precursor protein and messenger ribonucleic acid. Endocrinology 122:2355–2363.
    Google Scholar
  29. K. G. Nelson, Y. Sakai, B. Eitzman, T. Steed, and J. McLachlan (1994). Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes. Cell Growth Differ. 5:595–606.
    Google Scholar
  30. Y. Sakai, K.G. Nelson, S. Snedeker, N. L. Bossert, M. P. Walker, J. McLachlan, and R. P. DiAugustine (1994). Expression of epidermal growth factor in suprabasal cells of stratified squamous epithelia: Implications for a role in differentiation. Cell Growth Differ. 5:527–535.
    Google Scholar
  31. R. P. DiAugustine, R. G. Richards, and J. Sebastian (1997). EGF-related peptides and their receptors in mammary gland development. J. Mam. Gland Biol. Neoplasia 2:109–117.
    Google Scholar
  32. J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano (1995). Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108:413–430.
    Google Scholar
  33. J. M. Carroll, N. C. Luetteke, D. C. Lee, and F. M. Watt (1998). Role of integrins in mouse eyelid development: Studies in normal embryos and embryos in which there is a failure of eyelid fusion. Mech. Dev. 78:37–45.
    Google Scholar
  34. J. P. Witty, J. H. Wright, and L. M. Matrisian (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol. Biol. Cell 6:1287–303.
    Google Scholar
  35. S. B. Kondapaka, R. Fridman, and K. B. Reddy (1997). Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int. J. Cancer 70:722–726.
    Google Scholar
  36. P. Sundareshan, R. B. Nagle, and G. T. Bowden (1999). EGF induces the expression of matrilysin in the human prostate adenocarcinoma cell line, LNCaP. Prostate 40:159–166.
    Google Scholar
  37. O. c. P, H. Modjtahedi, P. Rhys-Evans, W. J. Court, G. M. Box, and S. A. Eccles (2000). Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res. 60:1121–1128.
    Google Scholar
  38. E. P. Sandgren, J. A. Schroeder, T.H. Qui, R.D. Palmiter, R. L. Brinster, and D. C. Lee (1995). Inhibition of mammary gland involution is associated with transforming growth factor α but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res. **55:**3915–3927.
    Google Scholar
  39. K. J. Fowler, F. Walker, W. Alexander, M. L. Hibbs, E. C. Nice, R. M. Bohmer, G. B. Mann, C. Thumwood, R. Maglitto, J. A. Danks, R. Chetty, A. W. Burgess, and A. R. Dunn (1995). A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc. Natl. Acad. Sci. U.S.A. 92:1465–1469.
    Google Scholar
  40. Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131:215–226.
    Google Scholar
  41. F. E. Jones and D. F. Stern (1999). Expression of dominantnegative ErbB2 in the mammary gland of transgenic mice reveals a role in lobuloalveolar development and lactation. Oncogene 18:3481–3490.
    Google Scholar
  42. F. E. Jones, T. Welte, X. Y. Fu, and D. F. Stern (1999). ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J. Cell Biol. 147:77–88.
    Google Scholar
  43. J. A. Schroeder and D. C. Lee (1997). Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia. J. Mam. Gland Biol. Neoplasia 2:119–129.
    Google Scholar
  44. Y. Matsui, S. A. Halter, J. T. Holt, B. L. Hogan, and R. J. Coffey (1990). Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell 61:1147–1155.
    Google Scholar
  45. S. Sakai, M. Mizuno, T. Harigaya, K. Yamamoto, T. Mori, R. J. Coffey, and H. Nagasawa (1994). Cause of failure of lactation in mouse mammary tumor virus/human transforming growth factor α transgenic mice. Proc. Soc. Exp. Biol. Med. 205:236–242.
    Google Scholar
  46. R. C. Humphreys and L. Hennighausen (1999). Signal transducer and activator of transcription 5a influences mammary epithelial cell survival and tumorigenesis. Cell Growth Differ. 10:685–694.
    Google Scholar
  47. R. C. Humphreys and L. Hennighausen (2000). Transforming growth factor α and mouse models of human breast cancer. Oncogene 19:1085–1091.
    Google Scholar
  48. L. T. Amundadottir, M. D. Johnson, G. Merlino, G. H. Smith, and R. B. Dickson (1995). Synergistic interaction of transforming growth factor α and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ 6:737–748.
    Google Scholar
  49. D. F. Stern, A. B. Roberts, N. S. Roche, M. B. Sporn, and R. A. Weinberg (1986). Differential responsiveness of myc-and rastransfected cells to growth factors: Selective stimulation of myctransfected cells by epidermal growth factor. Mol. Cell Biol. 6:870–877.
    Google Scholar
  50. D. J. Liao, G. Natarajan, S. L. Deming, M. H. Jamerson, M. Johnson, G. Chepko, and R. B. Dickson (2000). Cell cycle basis for the onset and progression of c-Myc-induced, TGFα enhanced mouse mammary gland carcinogenesis. Oncogene 19:1307–1317.
    Google Scholar
  51. A. Philipp, A. Schneider, I. Vasrik, K. Finke, Y. Xiong, D. Beach, K. Alitalo, and M. Eilers (1994). Repression of cyclin D1: A novel function of MYC. Mol. Cell Biol. 14:4032–4043.
    Google Scholar
  52. J. A. Schroeder, K. L. Troyer, and D. C. Lee (2000). Cooperative induction of mammary tumorigenesis by TGFα and Wnts. Oncogene 19:3193–3199.
    Google Scholar
  53. M. A. Simon (2000). Receptor tyrosine kinases: Specific outcomes from general signals. Cell 103:13–15.
    Google Scholar
  54. R. Brandt, R. Eisenbrandt, F. Leenders, W. Zschiesche, B. Binas, C. Juergensen, and F. Theuring (2000). Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation. Oncogene 19:2129–2137.
    Google Scholar
  55. I. L. Andrulis, S. B. Bull, M. E. Blackstein, D. Sutherland, C. Mak, S. Sidlofsky, K. P. Pritzker, R. W. Hartwick, W. Hanna, L. Lickley, R. Wilkinson, A. Qizilbash, U. Ambus, M. Lipa, H. Weizel, A. Katz, M. Baida, S. Mariz, G. Stoik, P. Dacamara, D. Strongitharm, W. Geddie, and D. McCready (1998). neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J. Clin. Oncol. 16:1340–1349.
    Google Scholar
  56. J. S. Ross and J. A. Fletcher (1999). The HER-2/neu oncogene: Prognostic factor, predictive factor and target for therapy. Semin. Cancer Biol. 9:125–138.
    Google Scholar
  57. H. Kim and W. J. Muller (1999). The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res. 253:78–87.
    Google Scholar
  58. M. P. DiGiovanna, M. A. Lerman, R. J. Coffey, W. J. Muller, R. D. Cardiff, and D. F. Stern (1998). Active signaling by Neu in transgenic mice. Oncogene 17:1877–1884.
    Google Scholar
  59. E. R. Andrechek, W. R. Hardy, P. M. Siegel, M. A. Rudnicki, R. D. Cardiff, and W. J. Muller (2000). Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 97:3444–3449.
    Google Scholar
  60. P. M. Siegel, D. L. Dankort, W. R. Hardy, and W. J. Muller (1994). Novel activating mutations in the neu protooncogene involved in induction of mammary tumors. Mol. Cell Biol. 14:7068–7077.
    Google Scholar
  61. P. M. Siegel and W. J. Muller (1996). Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc. Natl. Acad. Sci. U.S.A. 93:8878–8883.
    Google Scholar
  62. P. M. Siegel, E. D. Ryan, R. D. Cardiff, and W. J. Muller (1999). Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: Implications for human breast cancer. EMBO J. 18:2149–2164.
    Google Scholar
  63. K. Y. Kwong and M. C. Hung (1998). A novel splice variant of HER2 with increased transformation activity. Mol. Carcinogensis 23:62–68.
    Google Scholar
  64. C. M. Quinn, J. L. Ostrowski, S. A. Lane, D. P. Loney, J. Teasdale, and F. A. Benson (1994). c-erbB-3 protein expression in human breast cancer: Comparison with other tumor variables and survival. Histopathology 25:247–252.
    Google Scholar
  65. B. Bodey, B. Bodey, Jr., A. M. Groger, J. V. Luck, S. E. Siegel, C. R. Taylor, and H. E. Kaiser (1997). Clinical and prognostic significance of the expression of the c-erbB-2 and c-erbB-3 oncoproteins in primary and metastatic malignant melanomas and breast carcinomas. Anticancer Res. 17:1319–1330.
    Google Scholar
  66. M. Alimandi, A. Romano, M.C. Curia, R. Muraro, P. Fedi, S. A. Aaronson, P. P. Di Fiore, and M. H. Kraus (1995). Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 10:1813–1821.
    Google Scholar
  67. C. Wallasch, F. U. Weiss, G. Niederfellner, B. Jallal, W. Issing, and A. Ullrich (1995). Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 14:4267–4275.
    Google Scholar
  68. K. Zhang, J. Sun, N. Liu, D. Wen, D. Chang, A. Thomason, and S. K. Yoshinaga (1996). Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J. Biol. Chem. 271:3884–3890.
    Google Scholar
  69. T. G. Ram, M. E. Schelling, and H. L. Hosick (2000). Blocking HER-2/HER-3 function with a dominant negative form of HER-3 in cells stimulated by heregulin and in breast cancer cells with HER-2 gene amplification. Cell Growth Differ. 11:173–183.
    Google Scholar
  70. W. J. Muller, C. L. Arteaga, S. K. Muthuswamy, P. M. Siegel, M. A. Webster, R. D. Cardiff, K. S. Meise, F. Li, S. A. Halter, and R. J. Coffey (1996). Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell Biol. 16:5726–5736.
    Google Scholar
  71. A. E. Lenferink, J. F. Simpson, L. K. Shawver, R. J. Coffey, J. T. Forbes, and C. L. Arteaga (2000). Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu C MMTV/TGF-α bigenic mice [In Process Citation]. Proc. Natl. Acad. Sci. U.S.A. 97:9609–9614.
    Google Scholar
  72. L. T. Amundadottir and P. Leder (1998). Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16:737–746.
    Google Scholar
  73. G. J. Rowse, S. R. Ritland, and S. J. Gendler (1998). Genetic modulation of neu protooncogene-induced mammary tumorigenesis. Cancer Res. 58:2675–2679.
    Google Scholar
  74. J. A. Engelman, R. J. Lee, A. Karnezis, D. J. Bearss, M. Webster P. Siegel, W. J. Muller, J. J. Windle, R. G. Pestell, and M. P. Lisanti (1998). Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications forhumanbreast cancer. J. Biol. Chem. 273:20448–20455.
    Google Scholar
  75. B. Li, J. M. Rosen, J. McMenamin-Balano, W. J. Muller, and A. S. Perkins (1997). neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol. Cell Biol. 17:3155–3163.
    Google Scholar
  76. E. Horak, K. Smith, L. Bromley, S. LeJeune, M. Greenall, D. Lane, and A. L. Harris (1991). Mutant p53, EGF receptor and c-erbB-2 expression in human breast cancer. Oncogene 6:2277–2284.
    Google Scholar
  77. R. J. Lee, C. Albanese, M. Fu, M. D'Amico, B. Lin, G. Watanabe, G. K. Haines, 3rd, P. M. Siegel, M. C. Hung, Y. Yarden, J. M. Horowitz, W. J. Muller, and R. G. Pestell (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol. Cell. Biol. 20:672–683.
    Google Scholar
  78. I. M. Krane and P. Leder (1996). NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12:1781–1788.
    Google Scholar
  79. T. L. Burgess, S. L. Ross, Y. X. Qian, D. Brankow, and S. Hu (1995). Biosynthetic processing of neu differentiation factor. Glycosylation trafficking, and regulated cleavage from the cell surface. J. Biol. Chem. 270:19188–19196.
    Google Scholar
  80. E. J. Weinstein, S. Grimm, and P. Leder (1998). The oncogene heregulin induces apoptosis in breast epithelial cells and tumors. Oncogene 17:2107–2113.
    Google Scholar
  81. E. J. Weinstein and P. Leder (2000). The extracellular region of heregulin is sufficient to promote mammary gland proliferation and tumorigenesis but not apoptosis. Cancer Res. 60:3856–3861.
    Google Scholar
  82. X. Z. Wang, E.M. Jolicoeur, N. Conte, M. Chaffanet, Y. Zhang, M. J. Mozziconacci, H. Feiner, D. Birnbaum, M. J. Pebusque, and D. Ron(1999). γ-heregulin is the product of a chromosomal translocation fusing the DOC4 and HGL/NRG1 genes in the MDA-MB-175 breast cancer cell line. Oncogene 18:5718–5721.
    Google Scholar
  83. J. R. Zabrecky, T. Lam, S. J. McKenzie, and W. Carney (1991). The extracellular domain of p185/neu is released from the surface of human breast carcinoma cells, SK-BR-3. J. Biol. Chem. 266:1716–1720.
    Google Scholar
  84. R. Srinivasan, R. Poulsom, H.C. Hurst, and W. J. Gullick (1998). Expression of the c-erbB-4/HER4 protein and mRNA in normal human fetal and adult tissues and in a survey of nine solid tumor types. J. Pathol. 185:236–245.
    Google Scholar

Download references