Extracellular Matrix and Growth Factors During Heart Growth (original) (raw)
Reference list
Ruoslahti E. Proteoglycans as modulators of growth factor activities. Cell 1991;64:867–869. Google Scholar
Mulvany MJ. Resistence vessel growth and remodelling: cause or consequence in cardiovascular disease. J Hum Hypertens 1995;9:479–485. Google Scholar
Tryggvason K. The laminin family. Curr Op Cell Biol 1993;5:877–882. Google Scholar
Hynes RO. Integrins: versatility, modulation and signalling in cell adhesion. Cell 1992;69:11–25. Google Scholar
Schaper J, Speiser B. The extracellular matrix in the failing human heart. In: Hasenfuss G, Holubarsch C, Just H, Alpert N, eds. Cellular and molecular alterations in the failing human heart. Darmstadt: Steinkopff Verlag, 1992:303–313 Google Scholar
Hsueh W, Law R, Do Y. Integrins, adhesion, and cardiac remodeling. Hypertension 1998;31 (part 2):176–180. Google Scholar
Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993;120:577–585. Google Scholar
Yamada KM, Miyamoto S. Integrin transmembrane signalling and cytoskeletal control. Curr Op Cell Biol 1995;7:681–689. Google Scholar
Speiser B, Riess CF, Schaper J. The extracellular matrix in human cardiac tissue. Part I: Collagens I, III, IV and VI. Cardioscience 1991;4:225–32. Google Scholar
Speiser B, Weihcrauch D, Riess CF, Schaper J. The extracellular matrix in human cardiac tissue. Part II: Vimentin, laminin and fibronectin. Cardioscience 1992;1:41–9. Google Scholar
Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 1989;13:1637–1652. Google Scholar
Schwarzbauer JE. Fibronectin: from gene to protein. Curr Op Cell Biol 1991;3:786–791. Google Scholar
Iivanainen A, Sainio K, Sariola H, Tryggvason K. Primary structure and expression of a novel human laminin alpha 4 chain. FEBS Letters 1995;365:183–188. Google Scholar
Graf K, Do Y, Ashizawa N, Meehan W, Giachelli C, Marboe C, Fleck E, Hsueh W. Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation 1997;96:3063–3071. Google Scholar
Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failing human heart. Editorial. Circulation 1998;98:1699–1702. Google Scholar
Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Op Cell Biol 1998;5:602–608. Google Scholar
Wang H, Keiser JA. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of fit-1. Circ Res 1998;83:832–840. Google Scholar
Nagase H. Matrix metalloproteinases. In: Hooper NM, eds. Zinc Metalloproteinases in health and disease. London: Taylor and Francis, 1996 Google Scholar
Robert V, Besse S, Sabri A, Silvestre J, Assayag P, Nguyen T, Swynghedauw B, Delcayre C. Differential regulation of Matrix Metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest 1997;76:729–738. Google Scholar
Hardingham TE, Fosang AJ. Proteoglycans, many forms and many functions. FASEB J 1992;6:861–870. Google Scholar
Butzow R, Fukushima D, Twardzik DR, Ruoslathi E. A 60-kD protein mediates the binding of transforming growth factor-? to cell surface and extracellular matrix proteoglycans. J Cell Biol 1993;122:721–727. Google Scholar
Faham S, Hileman R, Fromm JR, Linhardt RJ, Rees DC. Heparin structure and interactions with basic fibroblast growth factor. Science 1996;271:1116–1120. Google Scholar
Belkin AM, Zhidkova N, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K. _?_1D integrin displaces the B1A isoform in striated muscles: localization at junctional structures and signaling potential in non-muscle cells. J Cell Biol 1996;132:211–266. Google Scholar
Belkin AM, Retta F, Pletjushkina OY, Balzac F, Silengo L, Fassler R, Kotenliansky VE, Burridge K, Tarone G. Muscle _?_1-D integrin reinforces the cytoskeleton-matrix link: modulation of integrin adhesive function by alternative splicing. J Cell Biol 1997;139:1583–1595. Google Scholar
Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Op Cell Biol 1997;9:707–713. Google Scholar
Plopper GE, Mc Namee HP, Dike LE, Bojanbowski K, Ingber DE. Convergence of integrins and growth factors receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 1995;6:1349–1365. Google Scholar
Kuppuswamy D, Kerr C, Narishige T, Kasi V, Merrick DR, Cooper G. Association of tyrosine-phosphorylated cSrc with the cytoskeleton of hypertrophying myocardium. J Biol Chem 1997;272:4500–4508. Google Scholar
Hedin U, Bottger BA, Forsberg E, Johansson S, J T. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 1988;107:307–319. Google Scholar
Hedin U, Therberg J, Roy J, Dumitrescu A, Tran P. Role of tyrosine kinases in extracellular matrixmediated modulation of arterial smooth muscle cell phenotype. Arterioscl Thromb Vasc Biol. 1997;17:1977–1984. Google Scholar
MacKenna DA, Dolfi F, Vuori K, Ruoslahti E. Extracellular signal-regulated kinase and c-Jun NH2-terminal linase activation by mechanical stretch is integrin dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 1998;101:301–310. Google Scholar
LLoyd Jones P, Crack M, Rabinovich M. Regulation of Tenascin-C, a vascular smooth muscle cell survival factor that interacts with the av_?_3 integrin to promote Epidermal Growth Factor receptor phosphorylation and growth. J Cell Biol 1997;139:279–293. Google Scholar
Lin CQ, Bissell MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 1993;7:737–743. Google Scholar
Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997;11:51–59. Google Scholar
Kardami E, Fandrich R. Basic fibroblast growth factor in atria and ventricles of vertebrates hearts. J Cell Biol 1989;109:1865–1875. Google Scholar
Corda S, Mebazaa A, Gandolfini MP, Fitting C, Marotte F, Peynet J, Charlemagne D, Cavaillon JM, Payen D, Rappaport L, Samuel JL. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of Fibroblast Growth factor-2 and factors related to ventricular hypertrophy. Circ Res 1997;81:679–687. Google Scholar
Kardami E, Liu L, Kishore S, Pasumarthi B, Doble BW, Cattini P. Regulation of basic fibroblast growth factor (bFGF) and FGF receptors in the heart. Ann N.Y Acad Sci 1995;752:353–369. Google Scholar
Cittadini A, Stromer H, Katz S, Clark R, Moses A, Morgan J, Douglas P. Differential cardiac effects of growth hormone and insulin-like growth factor-1 in the rat. A combined in vivo and in vitro evaluation. Circulation 1996;93:800–809. Google Scholar
Sporn M, Roberts B. Transforming Growth factor B: recent progresses and new challenges. J Cell Biol 1992;119:1017–1021. Google Scholar
Wilson E, Mai Q, Sudhir K, Weiss R, Ives H. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 1993;123:741–747. Google Scholar
Sudhir K, Wilson E, Chatterjee K, Ives HE. Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells. J Clin Invest 1993;92:3003–3007. Google Scholar
Schwartz MA, Lechene C. Adhesion is required for protein kinase C-dependent Na+/H+ antiporter by platelet-derived growth factor. Proc Natl Acad Sci USA 1992;89:6138–6141. Google Scholar
Butt RP, Laurent GJ, Bishop JE. Collagen production and replication by cardiac fibroblasts is enhanced in response to diverse classes of growth factors. Eur J Cell Biol 1995;68:330–335. Google Scholar
Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177–2209. Google Scholar
Borg TK, Raso DS, Terracio L. Potential role of the extracellular matrix in postseptation development of the heart. Ann N Y Acad Sci 1990;558:87–92. Google Scholar
Samuel JL, Farhadian F, Sabri A, Marotte F, Roberts V, Rappaport L. Expression of fibronectin during fetal aorta and postnatal development: an in situ hybridization and immunohistochemical study. Cardiovasc Res 1994;28:1653–1661. Google Scholar
Farhadian F, Barrieux A, Lortet S, Marotte F, Oliviero P, Rappaport L, Samuel JL. Differential splicing of fibronectin pre-messenger ribonucleic acid during cardiac ontogeny and development of hypertrophy in the rat. Lab Invest 1994;71:552–559. Google Scholar
George EL, Labouesse EN, Patelking RS, Raybum H, Hynes RO. Defects in mesoderm, neural tube, and vascular development in mouse embryos lacking fibronectin. Development 1993;119:1079–1091. Google Scholar
Dixon IMC, Ju H. The cardiac extracellular matrix during development. In: Ostadal B, Nagano M, Takeda N, Dhalla NS, eds. The developing heart. Philadelphia: Lippincott-Raven, 1997:81–90 Google Scholar
Kim H, Yoon CS, Kim H, Rah B. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct 1999;1:19–26. Google Scholar
Glukhova MA, Koteliansky V, Fondacci C, Marotte F, Rappaport L. Laminin variants and integrin laminin receptors in developing and adult human smooth muscle. Dev Biol 1993;157:437–447. Google Scholar
Glukhova MA, Thiery JP. Fibronectins and integrins in the development. Semin Cancer Biol 1993;4:241–249. Google Scholar
Giachelli C, Bae N, Lombardi D, Majesky M, Schwartz S. Molecular cloning and characterization of 2B7, a rat mRNA which distinguishes smooth muscle cell phenotypes in vitro and is identical to osteopontin (secreted phosphoprotein I, 2aR). Biochem Biophys Res Commun 1991;177:867–873. Google Scholar
MacLellan WR, Hawker J, Schneider MD. Myocardial growth factors. In: Marks AR, Taubman M, eds. Molecular biology of cardiovascular disease. New York: Marcel Dekker, 1997:327–377 Google Scholar
Komuro I, Katoh Y, Kaida T, et al. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 1991;266:1265–68. Google Scholar
Villareal FJ, Dillman WH. Cardiac hypertrophyinduced changes in mRNA levels for TGF_?_1, fibronectin and collagen. Am J Physiol 1992;262:H1861–1866. Google Scholar
Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and the renin-angiotensin-aldosterone system. Circulation 1991;83:1849–1865. Google Scholar
Robert V, Silvestre J, Charlemagne D, Sabri A, Trouve P, Wassef M, Swynghedauw B, Delcayre C. Biological determinants of aldosterone-salt induced cardiac fibrosis in rat. Hypertension 1995;26:971–978. Google Scholar
Weber K, Sun Y, Tyagi S, Cleutjens J. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26:279–292. Google Scholar
Kanda K, Matsuda T. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transplant 1994;3:481–492. Google Scholar
Dartsch P, Hammerle H. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur J Cell Biol 1986;41:339–346. Google Scholar
Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 1998;32:338–345. Google Scholar
Contard F, Sabri A, Gluckhova M, Sartore S, Marotte F, Pomies J, Schiavi P, Guez D, Samuel J, Rappaport L. Arterial smooth muscle cell phenotype in strokeprone spontaneously hypertensive rats. Hypertension 1993;22:665–676. Google Scholar
Takasaki I, Chobanian AV, Sarzani R, Brecher P. Effects of hypertension on fibronectin expression in the rat aorta. J Biol Chem 1990;265:21935–21939. Google Scholar
Saouaf R, Takasaki I, Eastman E, Chobanian AV, Brecher P. Fibronectin biosynthesis in the rat aorta in vitro. Changes due to experimental hypertension. J Clin Invest 1991;88:1182–1189. Google Scholar
Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel JL. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 1991;64:65–75. Google Scholar
Samuel J, Barrieux A, Dufour S, Dubus I, Contard F, Koteliansky v, Marotte F, Thiery J, Rappaport L. Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 1991;88:1737–1746. Google Scholar
Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin exporession associated with cardiac fibrosis in the rat. Circ Res 1994;74:727–739. Google Scholar
Farhadian F, Contard F, Sabri A, Samuel J, Rappaport L. Fibronectin and basement membrane in cardiovascular organogenesis and disease pathogenesis. Cardiovasc Res 1996;32:433–442. Google Scholar
Yamazaki T, Yazaki Y. Is there a major involvement of the Renin-Angiotensin system in cardiac hypertrophy? Circ Res 1997;81:639–642. Google Scholar
Dostal D, Baker K. Evidence for a role of an intracardiac renin angiotensin system in normal and failing hearts. Trends Cardiovasc Med 1993;3:12–17. Google Scholar
Baker KM, Booz, G W, Dostal DE. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Phys 1992;54:227–241. Google Scholar
Bardy N, Merval R, Benessiano J, Samuel J, Tedgui A. Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Circ Res 1996;79:70–78. Google Scholar
Dunn FW, Roux MH, Farhadian F, Sabri K, Ossart C, Samuel JL, Rappaport L, Hamon G. HR 720, a novel angiotensin receptor antagonist, inhibits the angiotensin II-induced trophic effects, fibronectin release and fibronectin-EIIIA+ expression in rat aortic vascular smooth muscle cells in vitro. J Pharmacol Exp Ther 1997;280:447–453. Google Scholar
Sabri A, Levy B, Poitevin P, Caputo L, Faggin E, Marotte F, Rappaport L, Samuel J. Differential roles of AT1 and AT2 receptor subtypes in vascular trophic response and phenotypic changes in response to stimulation with angiotensin II. Arteriosci Thromb Vase Biol 1997;17:257–264. Google Scholar
Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal disease. Circ Res 1998;83:1182–1191. Google Scholar
Sil P, Sen S. Angiotensin II and myocyte growth. Role of fibroblasts. Hypertension 1997;30:209–216. Google Scholar
Gray MO, Long CS, Kalinyak J, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF_?_-1 and endothelin-1 from fibroblasts. Cardiovasc Res 1998;40:352–363. Google Scholar
Imai T, Hirata Y, Emori T, Yanagisawa M, Masaki T, Marumo F. Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension 1992;19:753–757. Google Scholar
Moreau P, d'Uscio LV, Shaw S, Takase H, Barton M, Luscher TF. Angiotensin increases tissue endothelin and induces vascular hypertrophy: reversal by ETA-receptor antagonist. Circulation 1997;96:1593–1597. Google Scholar
Lorell B. Transition from hypertrophy to failure. Circulation 1997;96:3824–3827. Google Scholar
Brilla C, Pick R, Tan L, Janicki J, Weber K. Remodeling of the right and left ventricles in experimental hypertension. Circ Res 1990;83:1849–1965. Google Scholar
Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215–262. Google Scholar
Tamura K, Nyui N, Tamura N, Fujita T, Kihara M, Toya Y, Takasaki I, Takagi N, Ishii M, Oda K, Horiuchi M, Umemura S. Mechanism of angiotensin-mediated regulation of fibronectin gene in rat vascular smooth muscle cells. J Biol Chem 1998;273:26487–26496. Google Scholar
Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown E, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, on behalf of the SAVE investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival And Ventricular Enlargement trial. N Engl J Med 1992;327:669–677. Google Scholar
Nagasawa K, Zimmerman R, Munkel B, Linz W, Scholkens B, Schaper J. Extracellular matrix deposition in hypertensive hearts; antifibrotic effects of ramipril. Eur Heart J 1995;16:33–37. Google Scholar
Li JS, Sharifi A, Schiffrin E. Effect of AT1 angiotensinreceptor blockade on structure and function of small arteries in SHR. J Cardiovasc Pharmacol 1997;30:75–83. Google Scholar
Yu H, Gallagher AM, Garfin PM, Printz MP. Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression. Hypertension 1997;30:1047–1053. Google Scholar
Sigusch HH, Campbell SE, Weber KT. Angiotensin IIinduced myocardial fibrosis in rats: role of nitric oxide, prostaglandins and bradykinin. Cardiovasc Res 1996;31:546–554. Google Scholar
Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S. Increased expression of Interleukin 1-? and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997;81:664–671. Google Scholar
Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ Res 1996;78:759–768. Google Scholar
Hou J, Kato H, Cohen RA, Chobanian AV, Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest 1995;96:2469–2477. Google Scholar
Myers PR, Tanner MA. Vascular endothelial cell regulation of extracellular matrix collagen. Role of nitric oxide. Arterioscl Thromb Vasc Biol 1998;18:717–722. Google Scholar
Terracio L, Rubin K, D G, al. e. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 1991;68:734–744. Google Scholar
Sheppard AM, Onken MD, Rosen GD, Noakes PG, Dean DC. Expanding roles for ?4 integrin and its ligands in development. Cell Adhes Commun 1994;2:27–43. Google Scholar
Buck CA, Baldwin HS, DeLisser H. Cell adhesion receptors and early mammalian heart development: an overview. CR Acad Sci Lett 1993;316:849–859. Google Scholar