Regulation of Mammary Gland Development by Tissue Interaction (original) (raw)
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime View plans
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
REFERENCES
- A. Propper and L. Gomot (1967). Interactions tissulaires au cours de l'organogenése de la glande mammaire de l'embryon de lapin. Compt. Rend. Acad. Sci. Paris **264:**2573–2575.
Google Scholar - N.K. Wessells (1965). Morphology and proliferation during early feather development. Dev. Biol. **12:**131–153.
Google Scholar - N.K. Wessells and K.D. Roessner (1965). Nonproliferation in dermal condensations of mouse vibrissae and pelage hairs. Dev. Biol. **12:**419–433.
Google Scholar - K. Kratochwil (1969). Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. **20:**46–71.
Google Scholar - T. Sakakura, Y. Sakagami, and Y. Nishizuka (1979). Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. **72:**201–210.
Google Scholar - T. Sakakura, I. Kusano, M. Kusakabe, Y. Inaguma, and Y. Nishizuka (1987). Biology of mammary fat pad in fetal mouse: Capacity to support development of various fetal epithelia in vivo. Development **100:**421–430.
Google Scholar - C. van Genderen, R.M. Okamura, I. Fariñas, R. G. Quo, T.G. Parslow, L. Bruhn, and R. Grosschedl (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in Lef-1 deficient mice. Genes Dev. **8:**2691–2703.
Google Scholar - K. Kratochwil, M. Dull, I. Fariñas, J. Galceran and R. Grosschedl (1996). Lefl expression is activated by Bmp-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. **10:**1382–1394.
Google Scholar - J.J. Wysolmerski, W.M. Philbrick, M.E. Dunbar, B. Lanske, H. Kronenberg, A. Karaplis, and A.E. Broadus (1998). Rescue of parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development **125:**1285–1294.
Google Scholar - D.J. Phippard, S.J. Weber-Hall, P.T. Sharpe, M.S. Naylor, H. Jayatalake, R. Maas, I. Woo, D. Roberts-Clark, P.H. Francis-West, Y.H. Liu, R. Maxson, R.E. Hill, and T.C. Dale (1996). Regulation of Msx-1, Msx-2, Bmp-2, and Bmp-4 during foetal and postnatal mammary gland development. Development **122:**2729–2737.
Google Scholar - D. Houzelstein, A. Cohen, M.E. Buckingham and B. Robert. (1997). Insertional mutation of the mouse Msxl homeobox gene by an nlacZ reporter gene. Mech. Dev. **65:**123–133.
Google Scholar - B. Heuberger, I. Fitzka, G. Wasner, and K. Kratochwil (1982). Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc. Natl. Acad. Sci. U.S.A. **79:**2957–2961.
Google Scholar - Kratochwil, K. (1982). The importance of epithelial-stromal interaction in mammary gland development. In M. A. Rich, J.C. Hager, and J. Taylor-Papadimitriou, (eds.), Breast Cancer: Origins, Detection, and Treatment, Martinus Nijhoff Publishing, Boston: pp. 1–12.
Google Scholar - M. Weil, A. Itin, and E. Keshet (1995). A role for mesenchyme-derived tachykinins in tooth and mammary gland morphogenesis. Development **121:**2419–2428.
Google Scholar - R. Chiquet-Ehrisman, E.J. Mackie, C.A. Pearson, and T. Sakakura (1986). Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell **10:**131–139.
Google Scholar - G.R. Cunha and Y.K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia **1:**21–35.
Google Scholar - I. Thesleff and P. Sharpe (1997). Signaling networks regulating dental development. Mech. Dev. **67:**111–123.
Google Scholar - G.R. Cunha, P. Young, K. Christov, R. Guzman, S. Nandi, F. Talamantes, and G. Thordarson (1995). Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat. **152:**195–204.
Google Scholar - C. Rodriguez-Esteban, J.W.R. Schwabe, J. De La Peña, B. Foys, B. Eshelman, and J.C. Izpisúa Belmonte (1997). Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature **386:**360–366.
Google Scholar - E. Laufer, R. Dahn, O.E. Orozco, C-Y Yeo, J. Pisenti, D. Henriques, U.K. Abbott, J.F. Fallon, and C. Tabin (1997). Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature **386:**366–373.
Google Scholar - L. Guo, L. Degenstein, and E. Fuchs (1996). Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. **10:**165–175.
Google Scholar - Y. Saga, T. Yagi, Y. Ikawa, T. Sakakura, and S. Aizawa (1992). Mice develop normally without tenascin. Genes Dev. **6:**1812–1831.
Google Scholar - M.E. Dunbar and J.J. Wysolmerski (1999). Parathyroid hormone-related protein: A developmental regulatory molecule necessary for mammary gland development. J. Mam. Gland Biol. Neoplasia 4(1):XX-XX.
Google Scholar - H.C. Clevers and M. van de Wetering (1997). TCF/LEF factors earn their wings. Trends Genet. **13:**485–489.
Google Scholar - I. Satokata and R. Maas (1994). Msxl deficient mice exhibit cleft-palate and abnormalities of craniofacial and tooth development. Nature Genet. **6:**348–356.
Google Scholar - Y. Chen, M. Bei, I. Woo, I. Satokata, and R. Maas (1996). Msxl controls inductive signaling in mammalian tooth morphogenesis. Development **122:**3035–3044.
Google Scholar - S. Vainio, I. Karavanova, A. Jowett, and I. Thesleff (1993). Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell **75:**45–58.
Google Scholar - G. Wasner, I. Hennerman, and K. Kratochwil (1983). Ontogeny of mesenchymal androgen receptors in the embyonic mouse mammary gland. Endocrinology **113:**1771–1780.
Google Scholar - K. Kratochwil and P. Schwartz (1976). Tissue interactions in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue for testosterone. Proc. Natl. Acad. Sci. U.S.A. **73:**4041–4044.
Google Scholar - A. Raynaud, (1961). Morphogenesis of the mammary gland. In S.K. Kon, and A.T. Cowie, (eds.), The Mammary Gland and Its Secretions, Academic Press, New York pp. 3–46.
Google Scholar - G.W. Robinson and L. Hennighausen (1997). Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal-epithelial interactions. Development **124:**2701–2708.
Google Scholar - J.F. Wiesen, P. Young, Z. Werb, and G.R. Cunha. (1998). Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development **126:**335–344.
Google Scholar