Regulation of Mammary Gland Development by Tissue Interaction (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Propper and L. Gomot (1967). Interactions tissulaires au cours de l'organogenése de la glande mammaire de l'embryon de lapin. Compt. Rend. Acad. Sci. Paris **264:**2573–2575.
    Google Scholar
  2. N.K. Wessells (1965). Morphology and proliferation during early feather development. Dev. Biol. **12:**131–153.
    Google Scholar
  3. N.K. Wessells and K.D. Roessner (1965). Nonproliferation in dermal condensations of mouse vibrissae and pelage hairs. Dev. Biol. **12:**419–433.
    Google Scholar
  4. K. Kratochwil (1969). Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. **20:**46–71.
    Google Scholar
  5. T. Sakakura, Y. Sakagami, and Y. Nishizuka (1979). Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. **72:**201–210.
    Google Scholar
  6. T. Sakakura, I. Kusano, M. Kusakabe, Y. Inaguma, and Y. Nishizuka (1987). Biology of mammary fat pad in fetal mouse: Capacity to support development of various fetal epithelia in vivo. Development **100:**421–430.
    Google Scholar
  7. C. van Genderen, R.M. Okamura, I. Fariñas, R. G. Quo, T.G. Parslow, L. Bruhn, and R. Grosschedl (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in Lef-1 deficient mice. Genes Dev. **8:**2691–2703.
    Google Scholar
  8. K. Kratochwil, M. Dull, I. Fariñas, J. Galceran and R. Grosschedl (1996). Lefl expression is activated by Bmp-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. **10:**1382–1394.
    Google Scholar
  9. J.J. Wysolmerski, W.M. Philbrick, M.E. Dunbar, B. Lanske, H. Kronenberg, A. Karaplis, and A.E. Broadus (1998). Rescue of parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development **125:**1285–1294.
    Google Scholar
  10. D.J. Phippard, S.J. Weber-Hall, P.T. Sharpe, M.S. Naylor, H. Jayatalake, R. Maas, I. Woo, D. Roberts-Clark, P.H. Francis-West, Y.H. Liu, R. Maxson, R.E. Hill, and T.C. Dale (1996). Regulation of Msx-1, Msx-2, Bmp-2, and Bmp-4 during foetal and postnatal mammary gland development. Development **122:**2729–2737.
    Google Scholar
  11. D. Houzelstein, A. Cohen, M.E. Buckingham and B. Robert. (1997). Insertional mutation of the mouse Msxl homeobox gene by an nlacZ reporter gene. Mech. Dev. **65:**123–133.
    Google Scholar
  12. B. Heuberger, I. Fitzka, G. Wasner, and K. Kratochwil (1982). Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc. Natl. Acad. Sci. U.S.A. **79:**2957–2961.
    Google Scholar
  13. Kratochwil, K. (1982). The importance of epithelial-stromal interaction in mammary gland development. In M. A. Rich, J.C. Hager, and J. Taylor-Papadimitriou, (eds.), Breast Cancer: Origins, Detection, and Treatment, Martinus Nijhoff Publishing, Boston: pp. 1–12.
    Google Scholar
  14. M. Weil, A. Itin, and E. Keshet (1995). A role for mesenchyme-derived tachykinins in tooth and mammary gland morphogenesis. Development **121:**2419–2428.
    Google Scholar
  15. R. Chiquet-Ehrisman, E.J. Mackie, C.A. Pearson, and T. Sakakura (1986). Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell **10:**131–139.
    Google Scholar
  16. G.R. Cunha and Y.K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia **1:**21–35.
    Google Scholar
  17. I. Thesleff and P. Sharpe (1997). Signaling networks regulating dental development. Mech. Dev. **67:**111–123.
    Google Scholar
  18. G.R. Cunha, P. Young, K. Christov, R. Guzman, S. Nandi, F. Talamantes, and G. Thordarson (1995). Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat. **152:**195–204.
    Google Scholar
  19. C. Rodriguez-Esteban, J.W.R. Schwabe, J. De La Peña, B. Foys, B. Eshelman, and J.C. Izpisúa Belmonte (1997). Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature **386:**360–366.
    Google Scholar
  20. E. Laufer, R. Dahn, O.E. Orozco, C-Y Yeo, J. Pisenti, D. Henriques, U.K. Abbott, J.F. Fallon, and C. Tabin (1997). Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature **386:**366–373.
    Google Scholar
  21. L. Guo, L. Degenstein, and E. Fuchs (1996). Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. **10:**165–175.
    Google Scholar
  22. Y. Saga, T. Yagi, Y. Ikawa, T. Sakakura, and S. Aizawa (1992). Mice develop normally without tenascin. Genes Dev. **6:**1812–1831.
    Google Scholar
  23. M.E. Dunbar and J.J. Wysolmerski (1999). Parathyroid hormone-related protein: A developmental regulatory molecule necessary for mammary gland development. J. Mam. Gland Biol. Neoplasia 4(1):XX-XX.
    Google Scholar
  24. H.C. Clevers and M. van de Wetering (1997). TCF/LEF factors earn their wings. Trends Genet. **13:**485–489.
    Google Scholar
  25. I. Satokata and R. Maas (1994). Msxl deficient mice exhibit cleft-palate and abnormalities of craniofacial and tooth development. Nature Genet. **6:**348–356.
    Google Scholar
  26. Y. Chen, M. Bei, I. Woo, I. Satokata, and R. Maas (1996). Msxl controls inductive signaling in mammalian tooth morphogenesis. Development **122:**3035–3044.
    Google Scholar
  27. S. Vainio, I. Karavanova, A. Jowett, and I. Thesleff (1993). Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell **75:**45–58.
    Google Scholar
  28. G. Wasner, I. Hennerman, and K. Kratochwil (1983). Ontogeny of mesenchymal androgen receptors in the embyonic mouse mammary gland. Endocrinology **113:**1771–1780.
    Google Scholar
  29. K. Kratochwil and P. Schwartz (1976). Tissue interactions in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue for testosterone. Proc. Natl. Acad. Sci. U.S.A. **73:**4041–4044.
    Google Scholar
  30. A. Raynaud, (1961). Morphogenesis of the mammary gland. In S.K. Kon, and A.T. Cowie, (eds.), The Mammary Gland and Its Secretions, Academic Press, New York pp. 3–46.
    Google Scholar
  31. G.W. Robinson and L. Hennighausen (1997). Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal-epithelial interactions. Development **124:**2701–2708.
    Google Scholar
  32. J.F. Wiesen, P. Young, Z. Werb, and G.R. Cunha. (1998). Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development **126:**335–344.
    Google Scholar

Download references