Brain Insulin: Regulation, Mechanisms of Action and Functions (original) (raw)
References
Ahima, R. S., and Flier, S. (2000). Leptin. Ann. Rev. Physiol.62:413–437. Google Scholar
Air, E. L., Benoit, S. C., Blake Smith, K. A., Clegg, D. J., and Woods, S. C. (2002a). Acute third ventricle administration of insulin decreases food intake in two paradigms. Pharmacol. Biochem. Behav.72:423–429. Google Scholar
Air, E. L., Benoit, S. C., Clegg, D. J., Seeley, R. J., and Woods S. C. (2002). Insulin and leptin combine additively to reduce food intake and body weight in rats. Endocrinology143:2449–2452. Google Scholar
Air, E. L., Strowski, M. Z., Benoit, S. C., Conarello, S. L., Salituro, G. M., and Guan, X. M. (2002b). Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat. Med.8:179–183. Google Scholar
Aschford, M. L. J., Boden, P. R., and Teherne, J. M. (1990). Glucose-induced excitation of hypothalamic neurons is mediated by ATP-sensitive K+ channels. Pflügers Arch.415:479–483. Google Scholar
Barbaccia, M., Chuang, D., and Costa, E. (1982). Is insulin a neuromodulator? Adv. Biochem. Neuropharmacol. 33:511–518. Google Scholar
Baskin, D. J., Porte, D. Jr., Guest, K., and Dorsa, D. M. (1983). Regional concentrations of insulin in the rat brain. Endocrinology112:898–903. Google Scholar
Baskin, D. G., Stein, L. J., Ikeda, H., Woods, S. C., Figlewicz, D. P., Porte, D. Jr. (1985). Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci.36:627–633. Google Scholar
Baskin, D. G., Wilcox, B. J., Figlewicz, D. P., and Dorsa, D. M. (1988). Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 11:107–111. Google Scholar
Baura, G. D., Foster, D. M., Kaiyala, K., Porte, D., Jr., Kahn, S. E., and Schwartz, W. M. (1996). Insulin transport from plasma into the CNS by dexamethasone in dogs. Diabetes45:86–90. Google Scholar
Baura, G. D., Foster, D. M., Porte, D., Jr., Kahn, S. E., Begman, R. N., Cobelli, C., and Schwartz, M. W. (1993). Saturable transport of insulin from plasma into the CNS of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J. Clin. Invest.92:1824–1830. Google Scholar
Beck, B. (1999). Quantitative and macronutrient-related regulation of hypothalamic NPY, galanin and neurotensin. In Berthoud, H. R., and Seeley, R. J. (eds.), Neural and Metabolic Control of Macronutrient Intake, CRC Press, Boca Raton, FL, Ch. 29, pp. 455–464. Google Scholar
Bennett, R. G., Duckworth, W. C., and Hamel, F. G. (2000). Degradation of amylin by insulin-degrading enzyme. J. Biol. Chem.275:36621–36625. Google Scholar
Bergonzelli, G. E., Pralong, F. P., Glauser, M., Cavadas, C., Grouzmann, E., and Gaillard, R. C. (2001). Interplay between galanin and leptin in the hypothalamic control of feeding via CRH and neuropeptide Y. Diabetes50:2666–2672. Google Scholar
Berthoud, H. R. (1999). An overview of neural pathways and networks involved in the control of food intake and selection. In Berthoud, H. R., and Seeley, R. J. (eds.), Neural and Metabolic Control of Macronutrient Intake, CRC Press, Boca Raton, FL, Ch. 24, pp. 361–388. Google Scholar
Biessels, G. J., Van der Heide, L. P., Kamal, A., Bleys, R. L. A., and Gispen, W. H. (2002). Ageing and diabetes: Implications for brain function. Eur. J. Pharmacol.441:1–14. Google Scholar
Blundell, J. E. (1984). Serotonin and appetite. Neuropharmacology23:1537–1551. Google Scholar
Boyd, F. T. Jr., Clarke, D. W., and Raizada, M. K. (1986). Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Res.398:1–5. Google Scholar
Boyd, F. T., Jr., and Raizada, M. K. (1983). Effects of insulin and tunamycin on neuronal insulin receptors in culture. Am. J. Physiol.245:C283-C287. Google Scholar
Bruning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C., et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science289:2122–2125. Google Scholar
Bruning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T., Horsch, D., Accili, D., et al. (1998). A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell. 2:559–569. Google Scholar
Calapai, G., Corica, F., Corsonello, A., Sautebin, L., DiRosa, M., Campio, G. M., et al. (1999). Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J. Clin. Invest. 104:975–982. Google Scholar
Carvalheira, J. B. C., Siloto, R. M. P., Ignacchitti, I., Brenelli, S. L., Carvalho, C. R. O., Leite, A., et al. (2001). Insulin modulates leptin-induced STAT3 activation in rat hypothalamus. FEBS Lett. 500:119–124. Google Scholar
Chavez, M., Riedy, C. A., Van Dijk, G. D., and Woods S. C. (1996). Central insulin and macronutrient intake in the rat. Am. J. Physiol. 271:R727-R731 Google Scholar
Chavez, M., Seeley, R. J., Green, P. K., Wilkinson, C. W., Schwartz, M. W., and Woods, S. C. (1997). Adrenalectomy increases sensitivity to central insulin. Physiol. Behav.62:631–634. Google Scholar
Cheung, C. C., Thornton, J. E., Kuijper, J. L., Weigle, D. S., Clifton, D. K., and Steiner, R. A. (1997). Leptin is a metabolic gate for the onset of puberty in the female rat. Endocrinology138:855–858. Google Scholar
Cheung, C. C., Thornton, J. E., Nurani, S. D., Clifton, D. K., and Steiner, R. A. (2001). A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse. Neuroendocrinology74:12–21. Google Scholar
Choeiri, C., Staines, W., and Messier, C. (2002). Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience111:19–34. Google Scholar
Clarke, D. W., Mudd, L., Boyd, F. T., Fields, M., and Raizada, M. K. (1986). Insulin is released from rat brain neuronal cells in culture. J. Neurochem.47:831–836. Google Scholar
Craft, S., Asthana, S., Newcomer, J. W., Wilkinson, C. W., Matos, I. T., Baker, L. D., et al. (1999). Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry. 56:1135–1140. Google Scholar
Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, J., et al. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol. Aging. 17:123–130. Google Scholar
Craft, S., Peskind, E., Schwartz, M. W., Schellenberg, G. D., Raskind, M., and Porte, D., Jr. (1998). Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: Relationship to severity of dementia and apolipoprotein E genotype. Neurology50:164–168. Google Scholar
Cunningham, M. J., Clifton, D. K., and Steiner, R. A. (1999). Leptin's actions on the reproductive axis: perspectives and mechanisms. Biol. Reprod.60:216–222. Google Scholar
Dallman, M. F., Akana, S. F., Strack, A. M., Hanson, E. S., and Sebastian, R. J. (1995). The neural network that regulates energy balance in responsive to glucocorticoids and insulin, also regulates HPA axis responsivity at a site proximal to CRF neurons. Ann. N. Y. Acad. Sci.771:730–742. Google Scholar
Dallman, M. F., Strack, A. M., Akana, S. F., Bradbury, M. J., Hanson, E. S., Scribner, K. A., and Smith, M. (1993). Feast and famine: Critical role of glucocorticoids with insulin in daily energy flow. Front. Neuroendocrinol.14:303–347. Google Scholar
Dallongeville, J., Hecquet, B., Lebel, P., Edme, J. L., Le Fur, C., Fruchart, J. C., Auwerx, J., and Romon, M. (1998). Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. Int. J. Obes. Relat. Metab. Disord.22:728–733. Google Scholar
Devaskar, S. U., Giddins, S. J., Rajakumar, P. A., Canaghi, L. R., Menon, R. K., and Zahm, D. S. (1994). Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem.269:8445–8454. Google Scholar
Devaskar, S. U., Singh, B. S., Carnaghi, L. R., Rajakumar, P. A., and Giddings, S. J. (1993). Insulin II gene expression in rat central nervous system. Regul. Pept.48:55–63. Google Scholar
Duffy, K. R., and Pardridge, W. M. (1987). Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res.420:32–38. Google Scholar
Feurté, S., Nicolaïdis, S., and Gerozissis, K. (2000). Is the early increase in leptinemia one of the anorectic signals induced by an essential amino acid-deficient diet in rat? Endocrinology141:3916–3919. Google Scholar
Finn, P. D., Cunningham, M. J., Rickard, D. G., Clifton, D. K., and Steiner R. A. (2001). Serotonergic neurons are targets for leptin in the monkey. J. Clin. Endocrinol. Metab.86:422–426. Google Scholar
Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C., and Angeretti, N. (1992). Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: Modulation by interleukin-1. Brain Res. Mol. Brain Res.16:128–134. Google Scholar
Frank, H. J., and Pardridge, W. M. (1983). Insulin binding to brain microvessels. Adv. Metab. Disor.10:291–302. Google Scholar
Frölich, L., Blum-Degen, D., Berstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J. Neural. Transm. 105:423–438. Google Scholar
Frölich, L., Blum-Degen, D., Hoyer, S., Beckmann, H., and Riederer, P. (1997). Insulin, insulin receptors and IGF-I receptors in post-mortem human brain in ageing and in dementia of Alzheimer type. In Igbal, K., Winblad, B., Nishimura, T., Takeda, M., and Wisniewski, H. M., (eds.), Alzheimer's Disease: Biology, Diagnosis and Theurapeutics, Wiley, New York, pp. 457–465.
Gasparini, L., Gouras, G. K., Wang, R., Gross, R. S., Beal, M. F., Greengard, P., and Xu, H. (2001). Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci.21:2561–2570. Google Scholar
Gasparini, L., Netzer, W. J., Greengard, P., and Xu, H. (2002). Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacal Sci. 23:288–293. Google Scholar
Gavin, J. R., III, Alberti, K. J. M. M., Davidson, M. B., DeFronzo, R. A., Drash, A., Gabbe, S. G., et al. (1997). Report of the expert committee on the diagnosis and the classification of diabetes mellitus. Diabetes Care20:1183–1197. Google Scholar
Gerozissis, K., Orosco, M., Pelé, A., Rouch, C., and Nicolaïdis, S. (1993a). Hypothalamic insulin changes in relation to peripheral insulin infusion and feeding as revealed by microdialysis. In 23rd SFN meeting, Washington, DC, Nov. 1993.
Gerozissis, K., Orosco, M., Rouch, C., and Nicolaïdis, S. (1993b). Basal and hyperinsulinemia-induced immunoreactive insulin changes in lean and genetically obese Zucker rats revealed by microdialysis. Brain Res.611:258–263. Google Scholar
Gerozissis, K., Orosco, M., Rouch, C., and Nicolaïdis, S. (1997). Insulin responses to a fat meal in microdialysates and in plasma. Physiol. Behav.62:767–772. Google Scholar
Gerozissis, K., Orosco, M., Rouch, C., and Nicolaïdis, S. (1998). Brain insulin response to feeding in the rat is both macronutrient and area specific. Physiol. Behav.65:271–275. Google Scholar
Gerozissis, K., Rouch, C., Lemierre, S., Nicolaïdis, S., and Orosco, M. (2001). A potential role of central insulin in learning and memory related to feeding. Cell. Mol. Neurobiol.21:389–401. Google Scholar
Gerozissis, K., Rouch, C., Lemierre, S., Meile, M. J., and Orosco, M. (2002). Brain insulin and cognition related to feeding. In 5th ICN, Aug.–Sept. 2000, Bristol, UK.
Gilon, P., and Henquin, J. C. (2001). Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr. Rev.22:565–604. Google Scholar
Giorgino, F., Almahfouz, A., Goodyear, L. J., and Smith, R. J. (1993). Glucocorticoid regulation of insulin receptor and substrate IRI-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J. Clin. Invest.91:2020–2030. Google Scholar
Gispen, W. H., and Biessels, G. J. (2000). Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 23:542–549 Google Scholar
Greenwood, C. E., and Winocur, G. (2001). Glucose treatment reduces memory deficits in young adult rats fed high-fat diets. Neurobiol. Learn. Mem.75:179–189. Google Scholar
Grodsky, G. M. (1975).The kinetics of insulin release. In Hasselblatt, A., and Bruchhausen, F. V., (eds.), Insulin, Part 2, Springer-Verlag, New York, pp. 1–16. Google Scholar
Hamel, F. G., Bennett, R. G., and Duckworth, W. C. (1998). Regulation of multicatalytic enzyme activity by insulin and the insulin-degrading enzyme. Endocrinology139:4061–4066. Google Scholar
Harvey, J., McKenna, F., Herson, P. S., Spanswick, D., and Ashford, M. L. (1997). Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J Physiol.504:527–535. Google Scholar
Harvey, J., McKay, N. G., Walker, K. S., Van der Kaay, J., Downes, C. P., and Ashford, M. L. (2000). Essential role of phosphoinositide 3-kinase in leptin-induced-K(ATP) channel activation in the rat CRI-G1 insulinoma cell line. J. Biol. Chem.275:4660–4669. Google Scholar
Havel, P. J. (2001). Peripheral signals conveying metabolic information to the brain: Short-term and long-term regulation of food intake and energy homeostasis. Exp. Biol. Med.226:963–977. Google Scholar
Havrankova, J. M., Roth, J., and Brownstein, M. (1979). Concentrations of insulin and of insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J. Clin. Invest.64:636–642. Google Scholar
Havrankova, J. M., Schmechel, D., Roth, J., and Brownstein, M. (1978). Identification of insulin in rat brain. Proc. Nat. Acad. Sci.75:5737–5741. Google Scholar
Hedeskov, C. J. (1980). Mechanism of glucose-induced insulin secretion. Physiol. Rev.60:442–509. Google Scholar
Heidenreich, K. A., and Brandenburg, D. (1986). Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosilation of insulin receptors in adipocytes and brain. Endocrinology118:1835–1842. Google Scholar
Heidenreich, K. A., Zahniser, N. R., Berhanu, P., Brandenburg, D., and Olefsky, J. M. (1983). Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem.258:8527–8530. Google Scholar
Henneberg, N., and Hoyer, S. (1994). Short-term or long-term intracerebro-ventricular (i.c.v.) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosci. Lett.175:153–156. Google Scholar
Henneberg, N., and Hoyer, S. (1995). Desensitization of the neuronal insulin receptor: A new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch. Gerontol. Geriatr. 21:63–74. Google Scholar
Henquin, J. C. (2000). Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes49:1751–1760. Google Scholar
Henquin, J. C., Ishiyama, N., Nenquin, M., Ravier, M. A., and Jonas, J. C. (2002). Signals and pools underlying biphasic insulin secretion. Diabetes51(Suppl. 1):S60-S67. Google Scholar
Hökfelt, T., Broberger, C., Xu, Z. Q. D., Sergeyev, V., Ubink, R., and Diez, M. (2000). Neuropeptides–An overview. Neuropharmacology39:1337–1356. Google Scholar
Holden, R. J., Pakula, I. S., and Mooney, A. (1999). The role of brain insulin in the neurophysiology of serious mental disorders: Review. Med. Hypotheses52:193–200. Google Scholar
Howel, S. L. (1997). The biosynthesis and secretion of insulin. In Pickup, J. C., and Williams, G. (eds.), Textbook of Diabetes, 2nd ed. Vol. I, Ch. 8, pp. 1–14.
Hoyer, S. (1998). Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J. Neural. Transm.105:415–422. Google Scholar
Hoyer, S. (2002). The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: An update. J. Neural.Transm. 109:341–360 Google Scholar
Hoyer, S., Prem, L., Sorbi, S., and Amaducci, L. (1993). Stimulation of glycolytic key enzymes in cerebral cortex by insulin. Neuro. Rep.4:991–993. Google Scholar
Jones, E. G., Choi, D. W., and Mendell, L. M. (1999, March). Insulin, the brain and memory. Neurosci. Newslett briefing.
Jonas, E., Knox, R. J., Smith, T. C., Wayne, N. L., Connor, J. A., and Kaczmarek, L. K. (1997). Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion. Nature385:343–346. Google Scholar
Kadekaro, M., Ito, M., Gross, P. M. (1998). Local cerebral glucose utilization is increased in acutely adrenalectomized rats. Neuroendocrinology47:329–334. Google Scholar
Kahn, C. R., White, M. F., Shoelson, S. E., Backer, J. M., Araki, E., Cheatham B., et al. (1993). The insulin receptor and its substrate: molecular determinants of early events in insulin action. Recent Prog. Horm. Res. 48:291–339. Google Scholar
Kaiyala, K. J., Prigeon, R. L., Kahn, S. E., Woods, S. C., and Schwartz, M. W. (2000). Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes49:1525–1533. Google Scholar
Kalra, S. P., Dube, M. G., Fournier, A., and Kalra, P. S. (1991). Structure-function analysis of stimulation of food intake by neuropeptide Y: Effects of receptor agonists. Physiol. Behav.50:5–9. Google Scholar
Kalra, S. P., Dube, M. G., Pu, S., Xu, B., Horvath, T. L., and Kalra, P. S. (1999). Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev.20:68–100. Google Scholar
Kneussel, M. (2002). Dynamic regulation of GABA(A) receptors at synaptic sites. Brain Res. Rev.39:74–83. Google Scholar
Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature402:656–660 Google Scholar
Kulkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., and Kahn, C. R. (1999). Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell96:329–339. Google Scholar
Leibowitz, S. F., and Shor-Posner, G. (1986). Brain serotonin and eating behavior. Appetite7(Suppl.):1–14. Google Scholar
Leibson, C. L., Rocca, W. A., Hanson, V. A., Cha, R., Kokmen, E., O'Brien, P. C., and Palumbo, P. J. (1997). The risk of dementia among persons with diabetes mellitus: A population-based cohort study. Ann. N. Y. Acad. Sci.826:422–427. Google Scholar
Le Roith, D., Rojeski, M., and Roth, J. (1988). Insulin receptors in brain and other tissues: Similarities and differences. Neurochem. Int.12:419–423. Google Scholar
Levin, B. E., Dunn-Meynell, A. A., and Routh, V. H. (1999). Brain glucose sensing and body energy homeostasis: Role in obesity and diabetes. Am. J. Physiol.45:R1223-R1231. Google Scholar
Livingstone, C., Lyall, H., and Gould, G. W. (1995). Hypothalamic GLUT4 expression: A glucose-and insulin-sensing mechanism? Mol. Cell. Endocrinol. 107:67–70. Google Scholar
Ludwig, D. S., Tritos, N. A., Mastaitis, J. W., Kulkarni, R., Kokkotou, E., Elmquist, J., et al. (2001). Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 107:379–386. Google Scholar
Magarinos, A. M., Jain, K., Blount, E. D., Reagan, L., Smith, B. H., and McEwen, B. S. (2001). Peritoneal implantation of macroencapsulated porcine pancreatic islets in diabetic rats ameliorates severe hyperglycemia and prevents retraction and simplification of hippocampal dendrites. Brain Res.902:282–287. Google Scholar
Malaisse, W. J. (1996). Metabolic signaling of insulin secretion. Diabetes Rev. 4:145–158 Google Scholar
Marks, J. L., Madisson, J., and Eastman, C. J. (1998). Intracerebroventricular neuropeptide Y acutely influences glucose metabolism and insulin sensitivity in the rat. J. Neurochem.50:774–781. Google Scholar
McGowan, M. K., Andrews, K. M., Kelly, J., and Grossman, S. P. (1990). Effects of chronic intrahypothalamic infusion of insulin on food intake and diurnal meal patterning in the rat. Behav. Neurosci.104:371–383. Google Scholar
McNay, E. C., Fries, T. M., and Gold, P. E. (2000). Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl. Acad. Sci. U. S. A.97:2881–2885. Google Scholar
McNay, E. C., McCarthy, R. C., and Gold, P. E. (2001). Fluctuations in brain glucose concentration during behavioral testing: Dissociations between brain areas and between brain and blood. Neurobiol. Learn. Mem.75:325–337. Google Scholar
Messier, C., and Gagnon, M. (1996). Glucose regulation and cognitive functions: Relation to Alzheimer's disease and diabetes. Behav. Brain Res.75:1–11. Google Scholar
Messier, C., and Gagnon, M. (2000). Glucose regulation and brain aging. J. Nutr. Health Aging4:208–213. Google Scholar
Miles, W. R., and Root, H. F. (1922). Psychologic tests applied to diabetes patients. Arch. Intern. Med.30:767–777. Google Scholar
Morley, J. E., and Levine, A. S. (1982). Corticotrophin releasing factor, grooming and ingestive behavior. Life Sci.31:1459–1464. Google Scholar
Murakami, N., Hayashida, T., Kuroiwa, T., Nakahara, K., Ida, T., Mondal, M. S., Nakazato, M., Kojima, M., and Kangawa, K. (2002). Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J. Endocrinol.174:283–288. Google Scholar
Murata, M., Okimura, Y., Iida, K., Matsumoto, M., Sowa, H., Kaji, H., Kojima, M., Kangawa, K., and Chihara K. (2002). Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J. Biol. Chem.277:5667–5674. Google Scholar
Nicolaïdis, S. (1978). Mécanisme nerveux de l'équilibre énergétique. Journées Annuelles de Diabétologie de l'Hôtel Dieu de Paris. 1:152–156. Google Scholar
Obici, S., Feng, Z., Karkanias, G., Baskin, D. G., and Rossetti, L. (2002a). Decreasing hypothalamic insulin receptors cause hyperphagia and insulin resistance in rats. Nat. Neurosci.5:566–572. Google Scholar
Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., and Rossetti, L. (2002b). Central administration of oleic acid inhibits glucose production and food intake. Diabetes51:271–275. Google Scholar
Obici, S., Feng, Z., Tan, J., Liu, L., Karkanias, G., and Rossetti, L. (2001). Central melanocortin receptors regulate insulin action. J. Clin. Invest.108:1079–1085. Google Scholar
Oomura, Y., and Kita, H. (1981). Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia20(Suppl.): 290–298. Google Scholar
Orosco, M., and Gerozissis, K. (2001). Macronutrient-induced cascade of events leading to parallel changes in hypothalamic serotonin and insulin. Neurosci. Biobehav. Rev.25:167–174. Google Scholar
Orosco, M., Gerozissis, K., and Nicolaïdis, S. (1999). Effects of pure macronutrient diets on 5-HT release in the rat hypothalamus: Relationship to insulin secretion and possible mechanism for feedback control of fat and carbohydrate ingestion. In Berthoud, H. R., and Seeley, R. J. (eds.), Neural and Metabolic Control of Macronutrient Intake, CRC Press, Boca Raton, FL, Ch. 28, pp. 447–454. Google Scholar
Orosco, M., Gerozissis, K., Rouch, C., and Nicolaïdis, S. (1995). Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis. Brain Res. 671:149–158. Google Scholar
Orosco, M., Rouch, C., and Gerozissis, K. (2000). Activation of hypothalamic insulin by serotonin is the primary event of the insulin–serotonin interaction involved in the control of feeding. Brain Res. 872:64–70. Google Scholar
Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A., and Breteler, M. M. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology53:1937–1942. Google Scholar
Pardridge, W. M. (1986). Receptor-mediated peptide transport through the blood-brain barrier. Endocr. Rev.7:314–330. Google Scholar
Pardridge, W. M., Eisenberg, J., and Yang, J. (1985). Human blood–brain barrier insulin receptor. J. Neurochem.44:1771–1778. Google Scholar
Park, C. R. (2001). Cognitive effects of insulin in the CNS. Neurosci. Biobehav. Rev. 25:311–323. Google Scholar
Park, C. R., Seeley, R. J., Craft, S., and Woods, S. C. (2000). Intracerebro-ventricular insulin enhances memory in a passive-avoidance task. Physiol. Behav.68:509–514. Google Scholar
Penicaud, L., Leloup, C., Lorsignol, A., Alquier, T., and Guillod, E. (2002). Brain glucose sensing mechanism and glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care5:539–543. Google Scholar
Porte, D., Jr., Seeley, R. J., Woods, S. C., Baskin, D. G., Figlewicz, D. P., and Schwartz, M. W. (1998). Obesity, diabetes and the CNS. Diabetologia41:863–881. Google Scholar
Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., and Podlisny, M. B. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem.273:32730–32738. Google Scholar
Raizada, M. K. (1983). Localization of insulin-like immunoreactivity in the neurons from primary cultures of rat brain. Exp. Cell Res.143:351–357. Google Scholar
Raizada, M. K., Shemer, J., Judkins, J. H., Clarke, D. W., Masters, B. A., and LeRoith, D. (1988). Insulin receptors in the brain: Structural and physiological characterization. Neurochem. Res.13:297–303. Google Scholar
Recio-Pinto, E., Lang, F. F., and Ishii, D. N. (1984). Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurit formation response in cultured human neuroblastoma cells. Proc. Nat. Acad. Sci. U.S.A.81:2562–2566. Google Scholar
Romon, M., Lebel, P., Velly, C., Marecaux, N., Fruchart, J. C., and Dallongeville, J. (1999). Leptin response to carbohydrate or fat meal and association with subsequent satiety and energy intake. Am. J. Physiol.277:E855-E861. Google Scholar
Rosenzweig, J. L., Havrankova, J., Lesniak, M. A., Brownstein, M., and Roth, J., (1980). Insulin is ubiquitous in extrapancreatic tissues of rats and humans. Proc. Natl. Acad. Sci. U.S.A.77:572–576. Google Scholar
Rossmanith, W. G., Clifton, D. K., and Steiner, R. A. (1996). Galanin gene expression in hypothalamic GnRH-containing neurons of the rat: A model for autocrine regulation. Horm. Metab. Res.28:257–266. Google Scholar
Ryan, C. M., and Geckle, M. O. (2000). Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care23:1486–1493. Google Scholar
Sahu, A., and Zhao, A. Z. (2001). Phosphodiesterase 3B (PDE3B)-cyclic AMP pathway: A novel mechanism of leptin signaling in the hypothalamus. In 31st SFN, San Diego, CA, Nov. 2001.
Santos, M. S., Pereira, E. M., and Carvaho, A. P. (1999). Stimulation of immunoreactive insulin release by glucose in rat brain synaptosomes. Neurochem. Res.24:33–36. Google Scholar
Schechter, R. (1998). Effects of brain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures. Brain Res.808:270–278. Google Scholar
Schechter, R., and Abboud, M. (2001). Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures. Dev. Brain Res.127: 41–49. Google Scholar
Schechter, R., Abboud, M., and Johnson, G. (1999). Brain endogenous insulin effects on neurite growth within fetal rat neuron cell cultures. Brain Res. Dev. Brain Res. 116:159–167. Google Scholar
Schechter, R., Beju, D., Gaffney, T., Schaefer, F., and Whetsell, L. (1996). Preproinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the rat fetal nervous system. Brain Res.736:16–27. Google Scholar
Schechter, R., Sadiq, H. F., and Devaskar, S. U. (1990). Insulin and insulin mRNA are detected in neuronal cell cultures maintained in an insulin-free/serum-free medium. J. Histochem. Cytochem.38:829–836. Google Scholar
Schechter, R., Whitmire, J., Wheet, G. S., Beju, D., Jackson, K. W., Harlow, R., and Gavin, J. R., III (1994). Immunohistochemical and in situ hybridization study of an insulin-like substance in fetal neuron cell cultures. Brain Res. 636:9–27. Google Scholar
Schulingkamp, R. J., Pagano, T. C., Hung, D., and Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neurosci. Biobehav. Rev.24:855–872. Google Scholar
Schwartz, M. W. (2000). Biomedicine. Staying slim with insulin in mind. Science289:2066–2067. Google Scholar
Schwartz, M. W. (2001). Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity. J. Clin. Invest. 108:963–964. Google Scholar
Schwartz, M. W., Bergman, R. N., Kahn, S. E., Taborsky, G. J., Jr., Fisher, L. D., Sipols, A. J., et al. (1991). Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. J. Clin. Invest. 88:1272–1281. Google Scholar
Schwartz, M. W., Figlewicz, D. P., Baskin, D. G., Woods, S. C., and Porte, D., Jr. (1992a). Insulin in the brain: A hormonal regulator of energy balance. Endocr. Rev. 13:387–414. Google Scholar
Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P., and Baskin, D. G. (1996). Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest.98:1101–1106. Google Scholar
Schwartz, M. W., Sipols, A. J., Marks, J. L., Sanacora, G., White, J. D., Scheurink, A. (1992b). Inhibition of hypothalamic NPY gene expression by insulin. Endocrinology130:3608–3616. Google Scholar
Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., and Baskin, D. G. (2000). CNS control of food intake. Nature404:661–671. Google Scholar
Seeley, R. J., Yagaloff, K. A., Fisher, S. L., Burn, P., Thiele, T. E., van Dijk, G.(1997). Expression by insulin. Endocrinology130:3608–3616. Google Scholar
Silver, I. A., and Erecinska, M. (1998). Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79:1737–1745. Google Scholar
Simansky, K. J. (1996). Serotonergic control of the organization of feeding and satiety. Behav. Brain Res.73:37–42. Google Scholar
Sipols, A. J., Baskin, D. G., and Schwartz, M. W. (1995). Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic gene expression. Diabetes249:546–549. Google Scholar
Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D., and Ashford, M. L. (1997). Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature90:521–525. Google Scholar
Snyder, E. Y., and Kim, S. V. (1980). Insulin: Is it a nerve survival factor? Brain Res. 196:565–574. Google Scholar
Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. J Neurochem.29:13–26. Google Scholar
Steiner, R. A., Hohmann, J. G., Holmes, A. N., Wrenn, C. C., Cadd, G., Jureus, A., et al. (2001). Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer's disease. Proc. Nat. Acad. Sci. 98:4184–4189. Google Scholar
Stewart, R., and Liolitsa, D. (1999). Type 2 diabetes mellitus, cognitive impairement and dementia. Diabet. Med.16:93–112. Google Scholar
Strack, A. M., Sebastian, R. J., Schwartz, M. W., and Dallman, M. F. (1995). Glucocorticoids and insulin: Reciprocal signals for energy balance. Am. J. Physiol.268:R142-R149. Google Scholar
Strubbe, J. H., and Mein, C. G. (1977). Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiol. Behav. 19:309–313. Google Scholar
Swaab, D. F., Lucassen, P. J., Salehi, A., Scherder, E. J. A., van Someren, E. J. W., and Verwer, R. W. H. (1998). Reduced neuronal activity and reactivation in Alzheimer's disease. Prog. Brain Res.117:343–377. Google Scholar
Szanto, I., and Kahn, C. R. (2000). Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc. Natl. Acad. Sci. U.S.A.97:2355–2360. Google Scholar
Tataranni, P. A., Gautier, J. F., Chen, K., Uecker, A., Bandy, D., and Salbe, A. D. (1999). Neuro-anatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Nat. Acad. Sci. U.S.A.96:4569–4574. Google Scholar
Tempel, D. L., McEwen, B. S., and Leibowitz, S. F. (1992). Effects of adrenal steroid agonists on food intake and macronutrient selection. Physiol. Behav.52:1161–1166. Google Scholar
Tracy, A. L., Jarrard, L. E., and Davidson, T. L. (2001). The hippocampus and motivation revisited: Appetite and activity. Behav. Brain Res. 127:13–23. Google Scholar
Unger, J. W., Livingston, J. N., and Moss, A. M. (1991). Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects. Prog. Neurobiol.36: 343–362. Google Scholar
Van Houten, M., Posner, B. I., Kopriwa, B. M., and Brawer, J. R., (1979). Insulin binding sites in the rat brain: In vivo localization to the circumventricular organs by quantitative autoradiography. Endocrinology105:666–673. Google Scholar
Van Houten, M., Posner, B. I., Kopriwa, B. M., and Brawer, J. R. (1980). Insulin binding sites localized to nerve terminals in rat median eminence and arcuate nucleus. Science207:1081–1083 Google Scholar
Vannucci, S. (1994). Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J. Neurochem.62:240–246. Google Scholar
Vannucci, S. J., Maher, F., and Simpson, I. A. (1991). Glucose transporter proteins in brain: Delivery of glucose to neurons and glia. Glia21:2–21. Google Scholar
Vekrellis, K., Ye, Z., Qiu, W. Q., Walsh, D., Hartley, D., Chesneau, V., Rosner, M. R., and Selkoe, D. J. (2000). Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20:(1) 657–665 Google Scholar
Wallum, B. J., Taborsky, G. J., Jr., Porte, D., Jr., Figlewicz, D. P., Jacobson, L., Beard, J. C., et al. (1987). Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J. Clin. Endocrinol. Metab. 64:190–194. Google Scholar
Wan, Q., Xiong, Z. G., Man, H. Y., Ackerley, C. A., Braunton, J., Lu, W. Y., et al. (1997). Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature388:686–690. Google Scholar
Watt, J. A., Pike, C. J., Walencewicz-Wasserman, A. J., and Cotman, C. W. (1994). Ultrastructural analysis of beta-amyloid-induced apoptosis in cultured hippocampal neurons. Brain Res.661:147–156. Google Scholar
Wei, L., Matsumoto, H., and Rhoads, D. E. (1990). Release of immunoreactive insulin from rat brain synaptosomes under depolarizing conditions. J. Neurochem.54:1661–1665. Google Scholar
Weindl, A., and Sofroniew, M. V. (1981). Relation of neuropeptides to mammalian circumventricular organs. Adv. Biochem. Psychopharmacol.28:303–320. Google Scholar
Wickelgren, I. (1998). Tracking insulin to the mind. Science280:517–519. Google Scholar
Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, J. P., and Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis. Different circuits, different purpeses. Physiol. Behav.74:683–701. Google Scholar
Woods, S. C., Lotter, E. C., McKay, D., and Porte, D., Jr. (1979). Chronic intracerebroventricular infusion of insulin reduces food intake and body weight in baboons. Nature282:503–505. Google Scholar
Woods, S. C., Schwartz, M. W., Baskin, D. G., and Seeley, R. J. (2000). Food intake and the regulation of body weight. Annu Rev Psychol.51:255–277. Google Scholar
Woods, S. C., Seeley, R. J., Porte, D., Jr. and Schwartz, M. W. (1998). Signals that regulate food intake and energy homeostasis. Science280:1378–1383. Google Scholar
Wozniak, M., Rydzewski, B., Baker, S. P., and Raizada, M. K. (1993). The cellular and physiological actions of insulin in the central nervous system. Neurochem. Int.22:1–10. Google Scholar
Wree, A. (1991). Local cerebral glucose utilization in the brain of old learning impaired rats. Histochemistry95: 591–603. Google Scholar
Yalow, R. S., and Eng, J. (1983). Insulin in the central nervous system. Adv. Metab. Disord. 10:341–354. Google Scholar
Yang, X.-J., Kow, L.-M., Funabashi, T., and Mobbs, C. V. (1999). Hypothalamic glucose sensor sinsor-similarities to and differences from pancreatic beta-cell mechanisms. Diabetes48:1763–1772. Google Scholar
Yoshihara, T., Honma, S., and Honma, K. (1996). Effects of restricted daily feeding on neuropeptide Y release in the rat paraventricular nucleus. Am. J. Physiol.70:E589-E595. Google Scholar
Young, W. S., III (1986). Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides8:93–97. Google Scholar
Zahm, D. S. (1994). Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem.269:8445–8454. Google Scholar
Zahniser, N. R., Goens, M. B., Hanaway, P. J., and Vinych, J. V. (1984). Characterization and regulation of insulin receptors in rat brain. J. Neurochem.42:1354–1362. Google Scholar
Zaia, A., and Piantanelli, L. (1996). Insulin receptors in the brain: Age-related modifications. In Vidik, A., and Hofecker, G. (eds.), Vitality, Mortality and Aging, Universitatsverlag, pp. 147–158.
Zaia, A., and Piantanelli, L. (2000). Insulin receptors in the brain cortex of aging mice. Mech. Ageing Dev. 113:227–232. Google Scholar
Zhao, W. Q., and Alkon, D. C. (2001). Role of insulin and insulin receptors in learning and memory. Mol. Cell. Endocrinol.177:125–134. Google Scholar
Zhao, W. Q., and Alkon, D. C. (2002). Roles of the brain insulin receptor in spatial learning. In 22nd EWCBR Meeting, March 2002, ARC 1800, France.
Zhao, W. Q., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M. J., and Alkon, D. C. (1999). Brain insulin receptors and spatial memory. J. Biol. Chem.274:34893–34902. Google Scholar
Zhao, W. Q., Dou, J. T., Liu, Q. W., and Alkon, D. C. (2002). Evidence for locally produced insulin in the adult rat brain as a neuroactive peptide. In Nov. 2002. Orlando, FL, 32nd SFN meeting.