Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative Diseases (original) (raw)
References
Frandsen, A. and Schousboe, A. 1993. Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 60:1202-1211. PubMed Google Scholar
Tymianski, M., Charlton, M. P., Carlen, P. L., and Tator, C. H. 1993. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13:2085-2104. PubMed Google Scholar
Cebers, G., Zhivotovsky, B., Ankarcrona, M., and Liljequist, S. 1997. AMPA neurotoxicity in cultured cerebellar granule neurons: Mode of cell death. Brain Res. Bull. 43:393-403. PubMed Google Scholar
Carriedo, S. G., Sensi, S. L., Yin, H. Z., & Weiss, J. H. 2000. AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J. Neurosci. 20:240-250. PubMed Google Scholar
Liu, W., Liu, R., Chun, J. T., Bi, R., Hoe, W., Schreiber, S. S., and Baudry, M. 2001. Kainate excitotoxicity in organotypic hippocampal slice cultures: Evidence for multiple apoptotic pathways. Brain Res. 916:239-248. PubMed Google Scholar
McCormack, J. G., Halestrap, A. P., and Denton, R. M. 1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70:391-425. PubMed Google Scholar
Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. 1995. Ca2+-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state. Am. J. Physiol. 269:141-147. Google Scholar
Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609-1623. Google Scholar
Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P. 1995. Glutamate-induced neuronal death: A sucession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961-973. PubMed Google Scholar
Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1:120-129. PubMed Google Scholar
Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481-490. PubMed Google Scholar
Kim, T.-H., Zhao, Y., Barber, M. J., Kuharsky, D. K., and Yin, X.-M. 2000. Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275:39474-39481. PubMed Google Scholar
Martin, A. G. and Fearnhead, H. O. 2002. Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis. J. Biol. Chem. 277:50834-50841. PubMed Google Scholar
Liu, X., Zou, H., Slaughter, C., and Wang, X. 1997. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175-184. PubMed Google Scholar
Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441-446. PubMed Google Scholar
Candé, C., Cecconi, F., Dessen, P., and Kroemer, G. 2002. Apoptosis-inducing factor (AIF): Key to the conserved caspase-independent pathways of cell death? J. Cell Sci. 115:4727-4734. PubMed Google Scholar
Li, L. Y., Luo, X., and Wang, X. 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99. PubMed Google Scholar
Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. 2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43-53. PubMed Google Scholar
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33-42. PubMed Google Scholar
MacFarlane, M., Merrison, W., Bratton, S. B., and Cohen, G. M. 2002. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitation in vitro. J. Biol. Chem. 277:36611-36616. PubMed Google Scholar
Springs, S. L., Diavolitsis, V. M., Goodhouse, J., and McLendon, G. L. 2002. The kinetics of translocation of Smac/Diablo from the mitochondria to the cytosol in HeLa cells. J. Biol. Chem. 277:45715-45718. PubMed Google Scholar
Finucane, D. M., Waterhouse, N. J., Amarante-Mendes, G. P., Cotter, T. G., and Green, D. R. 1999. Collapse of the inner mitochondrial transmembrane potential is not required for apoptosis of HL60 cells. Exp. Cell Res. 251:166-174. PubMed Google Scholar
Heiskanen, K. M., Bhat, M. B., Wang, H.-W., Ma, J., and Nieminen, A.-L. 1999. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274:5654-5658. PubMed Google Scholar
Prehn, J. H. M., Jordán, J., Ghadge, G. D., Preis, E., Galindo, M. F., Roos, R. P., Krieglstein, J., and Miller, R. J. 1997. Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68:1679-1685. PubMed Google Scholar
Rego, A. C., Vesce, S., and Nicholls, D. G. 2001. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 8:995-1003. PubMed Google Scholar
Lassus, P., Opitz-Araya, X., and Lazebnik, Y. 2002. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352-1354. PubMed Google Scholar
Kumar, S. and Vaux, D. L. 2002. A Cinderella caspase takes center stage. Science 297:1290-1291. PubMed Google Scholar
Lemasters, J. J., Qian, T., Elmore, S. P., Trost, L. C., Nishimura, Y., Herman, B., Bradham, C. A., Brenner, D. A., Nieminen, A. L. 1998. Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofactors 8:283-285. PubMed Google Scholar
Uchiyama, Y. 2001. Autophagy cell death and its execution by lysosomal cathepsins. Arch. Histol. Cytol. 64:233-246. PubMed Google Scholar
Pastorino, J. G., Tafani, M., Rothman, R. J., Marcineviciute, A., Hoek, J. B., and Farber, J. L. 1999. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem. 274:31734-31739. PubMed Google Scholar
Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A., and Martinou, J.-C. 1998. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143:217-224. PubMed Google Scholar
Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. 2001. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem. 276:18361-18374. PubMed Google Scholar
Henshall, D. C., Araki, T., Schindler, C. K., Lan, J.-Q., Tiekoter, K. L., Taki, W., and Simon, R. P. 2002. Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J. Neurosci. 22:8458-8465. PubMed Google Scholar
Springer, J. E., Azbill, R. D., Nottingham, S. A., and Kennedy, S. E. 2000. Calcineurin-mediated Bad dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J. Neurosci. 20:7246-7251. PubMed Google Scholar
Yang, J., Liu, X., Bhalla, K, Kim, C. N., Ibrado, A. M., Cai, J., Peng, T.-I., Jones, D. P., and Wang, X. 1997. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129-1132. PubMed Google Scholar
Wang, N. S., Unkila, M. T., Reineks, E. Z., and Distelhorst, C. W. 2001. Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J. Biol. Chem. 276:44117-44128. PubMed Google Scholar
Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., örd, T., and Bredesen, D. E. 1993. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 262:1274-1277. PubMed Google Scholar
Ellerby, L. M., Ellerby, H. M., Park, S. M., Holleran, A. L., Murphy, A. N., Fiskum, G., Kane, D. J., Testa, M. P., Kayalar, C., and Bredesen, D. E. 1996. Shift of the cellular oxidation-reduction potential in neural cells expressing bcl-2. J. Neurochem. 67:1259-1267. PubMed Google Scholar
Zhu, L., Ling, S., Yu, X.-D., Venkatesh, L. K., Subramanian, T., Chinnadurai, G., and Kuo, T. H. 1999. Modulation of mitochondrial Ca2+ homeostasis by Bcl-2. J. Biol. Chem. 274:33267-33273. PubMed Google Scholar
Krohn, A. J., Wahlbrink, T., and Prehn, J. H. M. 1999. Mitochondrial depolarization is not required for neuronal apoptosis. J. Neurosci. 19:7394-7404. PubMed Google Scholar
Shimizu, S. and Tsujimoto, Y. 2000. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. USA 97:577-582. PubMed Google Scholar
Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744-747. PubMed Google Scholar
Arnaudeau, S., Kelley, W. L., Walsh, Jr. J. V., and Demaurex, N. 2001. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 276:29430-29439. PubMed Google Scholar
Rapizzi, E., Pinton, P., Szabadkai, G., Wieckowski, M. R., Vandecasteele, G., Baird, G., Tuft, R. A., Fogarty, K. E., and Rizzuto, R. 2002. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159:613-624. PubMed Google Scholar
Chen, L. and Gao, X. 2002. Neuronal apoptosis induced by endoplasmic reticulum stress. Neurochem. Res. 27:891-898. PubMed Google Scholar
Aoki, S., Su, Q., Li, H., Nishikawa, K., Ayukawa, K., Hara, Y., Namikawa, K., Kiryu-Seo, S., Kiyama, H., and Wada, K. 2002. Identification of an axotomy-induced glycosylated protein, AIGP1, possibly involved in cell death triggered by endoplasmic reticulum-golgi stress. J. Neurosci. 22:10751-10760. PubMed Google Scholar
Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. 2001. Coupling endoplasmic reticulum stress to the cell death program. J. Biol. Chem. 276:33869-33874. PubMed Google Scholar
Ferri, K. F. and Kroemer, G. 2001. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3:E255-E263. PubMed Google Scholar
Peng, T.-I. and Greenamyre, J. T. 1998. Privileged access to mitochondria of calcium influx through _N_-methyl-D-aspartate receptors. Mol. Pharmacol. 53:974-980. PubMed Google Scholar
Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E., and Reynolds, I. J. 1998. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1:366-373. PubMed Google Scholar
Ward, M. W., Rego, A. C., Frenguelli, B. G., and Nicholls, D. G. 2000. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20:7208-7219. PubMed Google Scholar
Rego, A. C., Santos, M. S., and Oliveira, C. R. 2000. Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochem. Int. 36:159-166. PubMed Google Scholar
Castilho, R. F., Hansson, O., Ward, M. W., Budd, S. L., and Nicholls, D. G. 1998. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 18:10277-10286. PubMed Google Scholar
Alano, C. C., Beutner, G., Dirksen, R. T., Gross, R. A., and Sheu, S. S. 2002. Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation. J. Neurochem. 80:531-538. PubMed Google Scholar
Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E., and Passarella, S. 2000. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 275:37159-37166. PubMed Google Scholar
Luetjens, C. M., Bui, N. T., Sengpiel, B., Münstermann, G., Poppe, M., Krohn, A. J., Bauerbach, E., Krieglstein, J., and Prehn, J. H. M. 2000. Delayed mitochondrial dysfunction in excitotoxic neuron death: Cytochrome c release and a secondary increase in superoxide production. J. Neurosci. 20:5715-5723. PubMed Google Scholar
Tenneti, L. and Lipton, S. A. 2000. Involvement of activated caspase-3-like proteases in _N_-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 74:134-142. PubMed Google Scholar
Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. 2002. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259-263. PubMed Google Scholar
Rego, A. C., Ward, M. W., and Nicholls, D. G. 2001. Mitochondria control AMPA/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J. Neurosci. 21:1893-1901. PubMed Google Scholar
Kiedrowski, L. 1998. The difference between mechanisms of kainate and glutamate excitotoxicity in vitro: Osmotic lesion versus mitochondrial depolarization. Restor. Neurol. Neurosci. 12:71-79. PubMed Google Scholar
Larm, J. A., Cheung, N. S., and Beart, P. M. 1997. Apoptosis induced via AMPA-selective glutamate receptors in cultured murine cortical neurons. J. Neurochem. 69:617-622. PubMed Google Scholar
Rego, A. C., Monteiro, N. M., Silva, A. P., Gil, J., Malva, J. O., and Oliveira, C. R. 2003. Mitochondrial apoptotic cell death and moderate superoxide generation upon selective activation of non-desensitizing AMPA receptors in hippocampal cultures. J. Neurochem. (in press).
Itoh, T., Itoh, A., Horiuchi, K., and Pleasure, D. 1998. AMPA receptor-mediated excitotoxicity in human NT2-N neurons results from loss of intracellular Ca2+ homeostasis following marked elevation of intracellular Na+. J. Neurochem. 71:112-124. PubMed Google Scholar
Turrens, J. F., Alexandre, A., Lehninger, A. L. 1985. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:408-414. PubMed Google Scholar
Maciel, E. N., Vercesi, A. E., and Castilho, R. F. 2001. Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79:1237-1245. PubMed Google Scholar
Patel, M., Day, B. J., Crapo, J. D., Fridovich, I., and McNamara, J. O. 1996. Requirement for superoxide in excitotoxic cell death. Neuron 16:345-355. PubMed Google Scholar
Bindokas, V. P., Jordán, J., Lee, C. C., and Miller, R. J. 1996. Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J. Neurosci. 16:1324-1336. PubMed Google Scholar
Cai, J. and Jones, D. P. 1998. Superoxide in apoptosis: Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273:11401-11404. PubMed Google Scholar
Sugawara, T., Noshita, N., Lewén, A., Gasche, Y., Ferrand-Drake, M., Fujimura, M., Morita-Fujimura, Y., and Chan, P. H. 2002. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22:209-217. PubMed Google Scholar
Greenlund, L. J., Deckwerth, T. L., and Johnson, E. M., Jr. 1995. Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed neuronal death. Neuron 14:303-315. PubMed Google Scholar
Takeyama, N., Miki, S., Hirakawa, A., and Tanaka, T. 2002. Role of the mitochondrial permeability transition and cytochrome c release in hydrogen peroxide-induced apoptosis. Exp. Cell Res. 274:16-24. PubMed Google Scholar
Kruman, I., Guo, Q., and Mattson, M. P. 1998. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J. Neurosci. Res. 51:293-308. PubMed Google Scholar
Forrest, V. J., Kang, Y.-H., McClain, D. E., Robinson, D. H., and Ramakrishnan, N. 1994. Oxidative stress-induced apoptosis prevented by trolox. Free Radic. Biol. Med. 16:675-684. PubMed Google Scholar
Krohn, A. J., Preis, E., and Prehn, J. H. M. 1998. Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J. Neurosci. 18:8166-8197. Google Scholar
Ahlemeyer, B. and Krieglstein, J. 2000. Inhibition of glutathione depletion by retinoic acid and tocopherol protects cultured neurons from staurosporine-induced oxidative stress and apoptosis. Neurochem. Int. 36:1-15. PubMed Google Scholar
Welch, W. J. and Gambetti, P. 1998. Chaperoning brain diseases. Nature 392:23-24. PubMed Google Scholar
Hyun, D.-H., Lee, M., Hattori, N., Kubo, S.-I., Mizuno, Y., Halliwell, B., and Jenner, P. 2002. Effect of wild-type or mutant parkin on oxidative damage, nitric oxide, antioxidant defenses and the proteasome. J. Biol. Chem. 277:28572-28577. PubMed Google Scholar
Lee, H. J., Shin, S. Y., Choi, C., Lee, Y. H., Lee, S. J. 2002. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277:5411-5417. PubMed Google Scholar
Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., Cookson, M. R., and Greenamyre, J. T. 2002. An in vitro model of Parkinson's disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22:7006-7015. PubMed Google Scholar
Kitamura, Y., Inden, M., Miyamura, A., Kakimura, J., Taniguchi, T., and Shimohama, S. 2002. Possible involvement of both mitochondria-and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 333:25-28. PubMed Google Scholar
da Costa, C. A., Paitel, E., Vincent, B., and Checler, F. 2002. α-Synuclein lowers p53-dependent apoptotic response of neuronal cells: Abolishment by 6-hydroxydopamine and implication for Parkinson's disease. J. Biol. Chem. 277:50980-50984. PubMed Google Scholar
Lee, M., Hyun, D., Halliwell, B., and Jenner, P. 2001. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J. Neurochem. 76:998-1002. PubMed Google Scholar
Xu, J., Chen, S., Ku, G., Ahmed, S. H., Xu, J., Chen, H., and Hsu, C. Y. 2001. Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J. Cereb. Blood Flow Metab. 21:702-710. PubMed Google Scholar
Moreira, P. I., Santos, M. S., Moreno, A., Rego, A. C., and Oliveira, C. 2002. Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J. Neurosci. Res. 69:257-267. PubMed Google Scholar
Cardoso, S. M., Santos, S., Swerdlow, R. H., and Oliveira, C. R. 2001. Functional mitochondria are required for amyloid β-mediated neurotoxicity. FASEB J. 10.1096/fj.00-0561fje.
Xu, X., Shi, Y., Gao, W., Mao, G., Zhao, G., Agrawal, S., Chisolm, G. M., Sui, D., and Cui, M.-Z. 2002. The novel presenilin-1-associated protein is a proapoptotic mitochondrial protein. J. Biol. Chem. 277:48913-48922. PubMed Google Scholar
Miguel-Hidalgo, J. J., Alvarez, X. A., Cacabelos, R., and Quack, G. 2002. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid (1-40). Brain Res. 958:210-221. PubMed Google Scholar
Gasparini, L., Netzer, W. J., Greengard, P., and Xu, H. 2002. Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacol. Sci. 23:288-293. PubMed Google Scholar
Bertrand, F., Desbois-Mouthon, C., Cadoret, A., Prunier, C., Robin, H., Capeau, J., Atfi, A., and Cherqui, G. 1999. Insulin antiapoptotic signaling involves insulin activation of the nuclear factor kB-dependent survival genes encoding tumor necrosis factor receptor-associated factor 2 and manganese superoxide dismutase. J. Biol. Chem. 274:30596-30602. PubMed Google Scholar
Barber, A. J., Nakamura, M., Wolpert, E. B., Reiter, C. E. N., Seigel, G. M., Antonetti, D. A., and Gardner, T. W. 2001. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol-3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J. Biol. Chem. 276:32814-32821. PubMed Google Scholar
Vis, J. C., Verbeek, M. M., de Waal, R. M., ten Donkelaar, H. J., and Kremer, B. 2001. The mitochondrial toxin 3-nitropropionic acid induces differential expression patterns of apoptosis-related markers in rat striatum. Neuropathol. Appl. Neurobiol. 27:68-76. PubMed Google Scholar
Garcia, M., Vanhoutte, P., Pages, C., Besson, M. J., Brouillet, E., and Caboche, J. 2002. The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module. J. Neurosci. 22:2174-2184. PubMed Google Scholar
Kiechle, T., Dedeoglu, A., Kubilus, J., Kowall, N. W., Beal, M. F., Friedlander, R., Hersch, S. M., and Ferrante, R. J. 2002. Cytochrome c and caspase-9 expression in Huntington's disease. Neuromol. Med. 1:183-195. Google Scholar
Gafni, J. and Ellerby, L. M. 2002. Calpain activation in Huntington's disease. J. Neurosci. 22:4842-4849. PubMed Google Scholar
Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G. P., and Davies, S. W. 2000. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. 97:8093-8097. PubMed Google Scholar
Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., Hayden, M. R., and Raymond, L. A. 2002. Increased sensitivity to _N_-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33:849-860. PubMed Google Scholar
Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., and Greenamyre, J. T. 2002. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5:731-736. PubMed Google Scholar
Rigamonti, D., Sipione, S., Goffredo, D., Zuccato, C., Fossale, E., and Cattaneo, E. 2001. Huntingtin's neuroprotective activity occurs via inhibition of procaspase-9 processing. J. Biol. Chem. 276:14545-14548. PubMed Google Scholar
Goffredo, D., Rigamonti, D., Tartari, M., De Micheli, A., Verderio, C., Matteoli, M., Zuccato, C., and Cattaneo, E. 2002. Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J. Biol. Chem. 277:39594-39598. PubMed Google Scholar
Brunk, U. T. and Terman, A. 2002. The mitochondrial-lysosomal axis theory of aging: Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269:1996-2002. PubMed Google Scholar