An Atlas of Mouse Mammary Gland Development (original) (raw)
- I. H. Russo and J. Russo (1978). Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 61:1439–1449.
Google Scholar - T. Sakakura (1987). Mammary embryogenesis. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland: Development, Regulation, and Function, Plenum Press, New York, pp. 37–65.
Google Scholar - C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.), TheMammary Gland: Development, Regulation, and Function; Plenum Press, New York, pp. 3–36.
Google Scholar - I. H. Russo and J. Russo (1996). Mammary gland neoplasia in long term rodent studies, Environ. Health Perspect. 104:938–967.
Google Scholar - F. F. Bolander (1990). Differential characteristics of the thoracic and abdominal mammary glands from mice. Exp. Cell Res. 189:142–144.
Google Scholar - R. C. Humphries, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajweski, J. C. Reed, and J. M. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022.
Google Scholar - G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev. Biol. 152:354–362.
Google Scholar - G. B. Silberstein, K. VanHorn, G. Shyamala, and C. W. Daniel (1994). Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84–90.
Google Scholar - N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.
Google Scholar - C. J. Wilde, C. H. Knight, and D. J. Flint (1999). Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia 4:129–136.
Google Scholar - R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115: 49–58.
Google Scholar - M. Li, X. Liu, G. W. Robinson, U. Bar-Peled, K. U. Wagner, W. S. Young, L. Hennighausen, and P. A. Furth (1997). Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl. Acad. Sci. USA 94:3425–3430.
Google Scholar - Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106.
Google Scholar - I. H. Russo, J. Medado, and J. Russo (1989). Endocrine influences on the mammary gland. In T. Jones, U. Mohr, and R. Hunts (eds.), Integument and Mammary Glands, Springer-Verlag, New York, pp. 252–266.
Google Scholar - H. L. Asch and B. B. Asch (1985). Expression of keratins and other cytoskeletal proteins in the mouse mammary epithelium during the normal developmental cycle and primary culture. Dev. Biol. 107:470–482.
Google Scholar - G. L. Radice, M. C. Ferreira-Cornwell, S. D. Robinson, H. Rayburn, L. A. Chodosh, M. Takeichi, and R. O. Hynes (1997). Precocious mammary gland development in _p_-cadherindeficient mice. J. Cell Biol. 139:1025–1032.
Google Scholar - J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97:274–290.
Google Scholar - K. C. Richardson (1949). Contractile tissues in the mammary gland, with special reference to myoepithelium in the goat. Proc. R. Soc. Lond. 136:30–45.
Google Scholar - R. Dulbecco, W. R. Allen, M. Bologna, and M. Bowman (1986). Marker evolution during the development of the rat mammary gland: Stem cells identified by markers and the role of myoepithelial cells. Cancer Res. 46:2449–2456.
Google Scholar - M. Barcellos-Hoff, J. Aggeler, and M. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235.
Google Scholar - J. Adams and F. Watt (1993). Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198.
Google Scholar - S. Dickson and M. Warburton (1992). Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland. J. Histochem. Cytochem. 40:697–703.
Google Scholar - C. Streuli and M. Bissell (1990). Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110:1405–1415.
Google Scholar - R. S. Talhouk, M. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118:1271–1282.
Google Scholar - O. Lefebvre, C. Wolf, J. Limacher, P. Hutin, and C. Wendling (1992). The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J. Biol. Chem. 119:997–1002.
Google Scholar - M. C. Neville, D. Medina, J. Monks, and R. C. Hovey (1998). The mammary fat pad. J. Mammary Gland Biol. Neoplasia 3:109–116.
Google Scholar - M. Matsumoto, H. Nishinakagawa, M. Kurohmaru, Y. Hayashi, and J. Otsuka (1992). Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J. Veterin. Med. Sci. 54:1117–1124.
Google Scholar - K. K. Sekhri, D. R. Pitelka, and K. B. DeOme (1967). Studies of mouse mammary glands: Cytomorphology of the normal mammary gland. J. Natl. Cancer Inst. 39:459–490.
Google Scholar - J. Russo, B. Gusterson, A. Rogers, I. H. Russo, and S. Wellings (1990). Biology of disease: Comparative study of human and rat mammary tumorigenesis. Lab. Invest. 62:244–278.
Google Scholar - J. R. Gordon and M. R. Bernfield (1980). The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev. Biol. 74:118–135.
Google Scholar - G. B. Silberstein and C. W. Daniel (1982). Glycosaminoclycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215–222.
Google Scholar - A. C. Andres and R. Strange (1999). Apoptosis in the estrous and menstrual cycles. J. Mammary Gland Biol. Neoplasia 4:221–228.
Google Scholar - G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo seMouse cretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.
Google Scholar - J. Ferguson, A. Schor, A. Howell, and M. Ferguson (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tiss. Res. 268:167–177.
Google Scholar - R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Nat. Acad. Sci. USA 79:7346–7350.
Google Scholar - S. Nandi (1958). Endocrine control of mammary gland development and function in the C3H/He mouse. J. Natl. Cancer Inst. 21:1039–1063.
Google Scholar - D. A. Nguyen and M. C. Neville (1998). Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia 3:233–246.
Google Scholar - I. H. Mather and T. W. Keenan (1998). The cell biology of milk secretion: Historical notes. J. Mammary Gland Biol. Neoplasia 3:227–232.
Google Scholar - E. Lee, W. Lee, C. Kaetael, G. Parry, and M. Bissell (1985). Interaction of mouse mammary epithelial cells with collagen substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82:1419–1423.
Google Scholar - A. R. Howlett and M. Bissell (1993). Influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 2:79–89.
Google Scholar - J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177:533–547.
Google Scholar - I. H. Mather and T. W. Keenan (1998). Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3:259–273.
Google Scholar - M. C. Neville (1999). Physiology of lactation. Clin. Perinatol. 26:251–279.
Google Scholar - D. R. Pitelka (1980). General morphology and histology of the adult gland. In The Mammary Gland, pp. 944–965.
- L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. J. Cell. Physiol. 168:559–569.
Google Scholar - P. A. Furth (1999). Mammary gland involution and apoptosis of mammary epithelial cells. J. Mammary Gland Biol. Neoplasia 4:123–127.
Google Scholar - L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling. Cell Tiss. Res. 281:413–419.
Google Scholar - K. H. Hollmann (1974). Cytology and fine structure of the mammary gland. In B. L. Larson, (ed.), Lactation: A Comprehensive Treatise, Acedemic Press, New York, pp. 3–95.
Google Scholar - R. C. Richards and G. K. Benson (1971). Involvement of the macrophage system in the involution of the mammary gland in the albino rat. J. Endocrinol. 51:149–156.
Google Scholar - V. A. Fadok (1999). Clearance: The last and often forgotten stage of apoptosis. J. Mammary Gland Biol. Neoplasia 4:203–211.
Google Scholar - A. Marti, H. Lazar, P. Ritter, and R. Jaggi (1999). Transcription factor activities and gene expression during mouse mammary gland involution. J. Mammary Gland Biol. Neoplasia 4:145–152.
Google Scholar