Multiphasic Approach for the Identification of the Different Classification Levels Of Pseudomonas savastanoi Pv. Phaseolicola (original) (raw)
Birch PRJ, Hyman LJ, Taylor R, Opio AF, Bragard C and Toth IK (1997) RAPD PCR-based differentiation of Xanthomonas campestris pv. phaseoli and Xanthomonas campestris pv. phaseoli var. fuscans. Eur J Plant Pathol 103: 809–814 Google Scholar
Brenner DJ, McWorter AC, Leete Knutson JK and Steigerwalt AG (1982) Escherichia vulneris: a species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15: 1133–1140 PubMed Google Scholar
Bruijn FJ de (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhiobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58: 2180–2187 PubMed Google Scholar
Bruijn FJ de (1996) Rep-PCR genomic fingerprinting of plant associated bacteria and computer-assisted phylogenetic analyses. In: Stacey G, Mullin B and Gresshoff PM (eds) Biology of Plant-Microbe Interactions, Proc 8th Symp on Molec. Plant-Microbe Interactions (pp 497–502) APS Press
Burkholder WH (1926) A new bacterial disease of the bean. Phytopathology 16: 915–928 Google Scholar
Cheng GY, Legard DE, Hunter JE and Burr TJ (1989) Modified bean pod assay to detect strains of Pseudomonas syringae pv. syringae that cause bacterial brown spot of snap bean. Plant Dis 73: 419–423 Google Scholar
Clayton EE (1950) Wildfire disease of tobacco and soybeans. Plant Dis Rep 34: 141–142 Google Scholar
Clerc A, Manceau C and Nesme X (1998) Comparison of Randomly Amplified Polymorphic DNA with Amplified Lenght Polymorphism to assess genetic diversity and genetic relatedness within genomospecies III. Appl Environ Microbiol 64: 1180–1187 Google Scholar
Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104: 410–433 PubMed Google Scholar
Crosa JMD, Brenner DJ and Falkow S (1973) Use of a singlestrand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo-and heteroduplexes. J Bacteriol 115: 904–911 PubMed Google Scholar
Cross JE, Kennedy BW, Lambert JW and Cooper RL (1966) Pathogenic races of the bacterial blight pathogen of sybeans, Pseudomonas glycinea. Plant Dis Rep 50: 557–560 Google Scholar
Descamps P and Véron M (1981) Une méthode de choix des caractères d'identification basée sur le théorème de Bayes et la mesure de l'information. Ann Inst Pasteur/Microbiol (Paris) 132B: 157–170 Google Scholar
Gardan L, Shafik H, Belouin S, Broch R, Grimont F and Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959) Int J Syst Bacteriol 49: 469–478 PubMed Google Scholar
González AI, Ruiz ML and Polanco C (1998) A race-specific insertion of transposable element IS_801_ in Pseudomonas syringae pv. phaseolicola. Mol Plant Microb Interact 11: 423–428 Google Scholar
Goto M, Ichikawa K and Makino T (1981) New bacterial diseases of plants found in Japan. Shokbutsu Boeki 35: 270–274 (in Japanese) Google Scholar
Grimont PAD (1988) Use of DNA reassociation in bacterial classification. Can J Microbiol 34: 541–546 PubMed Google Scholar
Grondeau C, Saunier M, Poutier F and Samson R (1992) Evaluation of physiological and serological profiles of Pseudomonas syringae pv. pisi for pea blight identification. Plant Pathol 41: 495–505 Google Scholar
Guillorit-Rondeau C, Malandrin L and Samson R (1996) Identification of two serological flagellar types (H1 and H2) in Pseudomonas syringae pathovars. Eur J Plant Pathol 102: 99–104 Google Scholar
Harper S, Zewide N, Brown IR and Mansfield JW (1987) Histological, physiological and genetic studies of the responses of leaves and pods of Phaseolus vulgaris to the races of Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. coronafaciens. Physiol Mol Plant Pathol 31: 153–172 Google Scholar
Jansing H and Rudolph K (1990) A sensitive and quick test for determination of bean seed infestation by Pseudomonas syringae pv. phaseolicola. J Plant Dis Protect 97: 42–55 Google Scholar
Khan MSA, Ramsey MD, Corbière R, Infantino A, Porta-Puglia A, Bouznad Z and Scott ES (1999) Ascochyta blight of chickpea in Australia: identification, pathogenicity and mating type. Plant Pathol 48: 230–234 Google Scholar
Klement Z and Lovrekovich L (1961) Defense reactions induced by phytopathogenic bacteria in bean pods. Phytopathol Z 41: 217–227 Google Scholar
Lelliott RA, Billing E and Hayward AC (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29: 470–489 PubMed Google Scholar
Lelliott RA and Stead DE (1987) Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford Google Scholar
Little E and Gilbertson RL (1997) Phenotypic and genotypic characters support placement of Pseudomonas syringae strains from tomato, celery, and cauliflower into distinct pathovars. In: Rudolph K, Burr TJ, Mansfield JW, Stead D, Vivian A and Von Kietzell J (eds) Pseudomonas syringae Pathovars and Related Pathogens (pp 542–547) Kluwer Academic Publishers
Louws FJ, Fulbright DW, Stephens CT and Bruijn FJ de (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60: 2286–2295 PubMed Google Scholar
Louws FJ, Bell J, Medina-Mora cm, Smart CD, Opgenorth D, Ishimaru CA, Hausbeck MK, Bruijn FJ and Fulbright DW (1998) rep-PCR-mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology 88: 862–868 Google Scholar
Malandrin L and Samson R (1998) Isozyme analysis for the identification of Pseudomonas syringae pathovar pisi strains. J Appl Microbiol 84: 895–902 Google Scholar
Malandrin L and Samson R (1999) Serological and molecular size of flagellins of Pseudomonas syringae pathovars and related bacteria. Syst Appl Microbiol, 22: 534–545 PubMed Google Scholar
Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ and Claverys J-P (1992) A highly conserved repeated DNA element located in the chromosome of Steptococcus pneumoniae. Nucleic Acids Res 20: 3479–3483 PubMed Google Scholar
Mitchell RE (1976) Isolation and structure of a chlorosis-inducing toxin of Pseudomonas phaseolicola. Phytochemistry 15: 1941–1947 Google Scholar
Nuske J and Fritsche W (1989) Phaseolotoxin production by Pseudomonas syringae pv. phaseolicola: the influence of temperature. J Basic Microbiol 29: 441–447 PubMed Google Scholar
Onfroy C, Tivoli B, Corbière R and Bouznad Z (1999) Cultural, molecular and pathogenic variability of Mycospharella pinodes and Phoma medicaginis var. pinodella isolates from dried pea (Pisum sativum) in France. Plant Pathol 48: 218–229 Google Scholar
Ovod V, Knirel YA, Samson R and Krohn KJ (1999) Immunochemical characterization and taxonomic evaluation of O polysaccharides of the lipopolysaccharides of Pseudomonas syringae strains from serogroup O1. J Bacteriol 181: 6937–6947 PubMed Google Scholar
Palleroni NJ (1984) Genus I Pseudomonas Migula 1894. In: Krieg NR and Holt JG (eds) Bergey's Manual of Systematic Bacteriology (pp 141–199) Williams and Wilkins, Baltimore Google Scholar
Prosen D, Hatziloukas E, Schaad NW and Panopoulos NJ (1993) Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology 83: 965–970 Google Scholar
Rademaker JLW and Bruijn FJ de (1997) Characterisation and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In: Gaetano-Anolles G and Gresshoff PM (eds) DNA Markers: Protocols, Applications and Overviews (pp 151–171) J. Wiley & Sons, NY Google Scholar
Rademaker JLW, Louws FJ and Bruijn FJ de (1998) Characterisation of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Akermans ADL, Elsas JD van and Bruijn FJ de (eds) Molecular Microbial Ecology Manual (pp 1–27) Kluwer Academic Publishers, the Netherlands Google Scholar
Ribeiro R de LD, Hagedorn DJ and Durbin RD (1978) Characterization of a pathovar of Pseudomonas tabaci inciting wildfire of bean (Phaseolus vulgaris L.) in Brazil. In: INRA (ed) Proc 4th Int Conf Plant Pathogenic Bacteria. Vol II (p 733) Angers
Ribeiro R de LD, Hagedorn DJ, Durbin RD, Uchytil TF (1979) Characterization of the bacterium inciting bean wildfire in Brazil. Phytopathology 69: 208–212 Google Scholar
Rudolph K (1979) Bacterial brown spot disease of bush bean (Phaseolus vulgaris L.) in Germany, incited by Pseudomonas syringae Van Hall s. s. pathovar phaseoli. Z Pflanzenkr Pflanzenschutz 86: 75–85 Google Scholar
Sambrook J, Fritsch EF, and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, Second edition. Cold Spring Harbor Laboratory Press, New York Google Scholar
Samson R, Shafik H, Benjama A and Gardan L (1998) Description of the bacterium causing blight of leek as Pseudomonas syringae pv. porri (pv. nov.). Phytopathology 88: 844–850 Google Scholar
Sands DC, Schroth MN and Hildebrand DC (1970) Taxonomy of phytopathogenic pseudomonads. J Bacteriol 101: 9–23 PubMed Google Scholar
Saunier M, Malandrin L and Samson R (1996) Distribution of Pseudomonas syringae pathovars into twenty-three O serogroups. Appl Environ Microbiol 62: 2360–2374 PubMed Google Scholar
Sawada H, Takeuchi T and Matsuda I (1997) Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornitine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences. Appl Environ Microbiol 63: 282–288 PubMed Google Scholar
Sinden SL and Durbin RD (1969) Some comparison of chlorosisinducing pseudomonad toxins. Phytopathology 59: 249–250 Google Scholar
Tamura K, Takikawa S, Tsuyumu S and Goto M (1989) Characterization of the toxin produced by Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker. Ann Phytopathol Soc Japan 55: 512 Google Scholar
Taylor JD, Teverson DM, Allen DJ and Pastor-Corrales MA (1996) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45: 469–478 Google Scholar
Tourte C (1993) Epidémiologie de Pseudomonas syringae pv. phaseolicola et mise au point de la PCR pour sa détection. PhD thesis. Université Claude Bernard-Lyon I, Lyon, France Google Scholar
Tourte C and Manceau C (1995) A strain of Pseudomonas syringae which does not belong to pathovar phaseolicola produces phaseolotoxin. Eur J Plant Pathol 101: 483–490 Google Scholar
Vandamme P, Pot B, Gillis M, de Vos P, Kersters K and Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407–438 PubMed Google Scholar
Versalovic J, Koeuth T and Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19: 6823–6831 PubMed Google Scholar
Versalovic J, Schneider M, Bruijn FJ de and Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequencebased Polymerase Chain Reaction. Method Mol Cell Biol 5: 25–40 Google Scholar
Völksch B and Weingart H (1997) Comparison of ethyleneproducing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea. Eur J Plant Pathol 103: 795–802 Google Scholar
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackenbrandt E, Starr MP and Trüper HG (1987) International Commitee on Systematic Bacteriology. Report of the ad hoc commitee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 Google Scholar
Weingart H and Völksch B (1997) Genetic fingerprinting of Pseudomonas syringae pathovars using ERIC-, REP-, and IS50-PCR. J Phytopathol 145: 339–345 Google Scholar
Welsh J and McCelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218 PubMed Google Scholar
Williams JGK, Kubelik AR, Livak KJ, Rafalski JA and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535 PubMed Google Scholar