An Algorithm for the Determination of All Significant Pathways in Chemical Reaction Systems (original) (raw)
References
Anderson, J. G., Brune, W. H., Lloyd, S. A., Toohey, D. W., Sander, S. P., Starr, W. L., Loewenstein, M., and Podolske, J. R., 1989: Kinetics of O3 destruction by ClO and BrO within the Antarctic vortex. An analysis based on in situ ER-2 data, J. Geophys. Res.94, 11480-11520. Google Scholar
Andronova, N. G. and Schlesinger, M. E., 1991: The application of cause-and-effect analysis to mathematical models of geophysical phenomena, 1. Formulation and sensitivity analysis, J. Geophys. Res.96, 941-946. Google Scholar
Brasseur, G. P., Tie, X. X., Rasch, P. J., and Lefèvre, F., 1997: A three-dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere, J. Geophys. Res.102, 8909-8930. Google Scholar
Carslaw, K. S., Luo, B., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett.22, 1877-1880. Google Scholar
Chapman, S., 1930: A theory of upper atmospheric ozone, Quart. J. Roy. Meteorol. Soc.3, 103-125. Google Scholar
Cicerone, R. J., 1987: Changes in stratospheric ozone, Science237, 35-42. Google Scholar
Clarke, B. L., 1988: Stoichiometric network analysis, Cell Biophys.12, 237-253. Google Scholar
Happel, J. and Sellers, P. H., 1982: Multiple reaction mechanisms in catalysis, Ind. Eng. Chem. Fundam.21, 67-76. Google Scholar
Heise, D. R., 1975: Causal Analysis, Wiley and Sons, New York. Google Scholar
Johnson, B. G. and Corio, P. L., 1993: Computer construction of reaction mechnisms, J. Phys. Chem.97, 12100-12105. Google Scholar
Johnston, H. and Kinnison, D., 1998: Methane photooxidation in the atmosphere: Contrast between two methods of analysis, J. Geophys. Res.103, 21967-21984. Google Scholar
Johnston, H. S. and Podolske, J., 1978: Interpretation of stratospheric photochemistry, Rev. Geophys. Space Phys.16, 491-519. Google Scholar
Jucks, K. W., Johnson, D. G., Chance, K. V., Traub, W. A., Salawitch, R. J., and Stachnik, R. A., 1996: Ozone production and loss rate measurements in the middle stratosphere, J. Geophys. Res.101, 28785-28792. Google Scholar
Kinnison, D. E., Grant, K. E., Connell, P. S., Rotman, D. A., and Wuebbles, D. J., 1994: The chemical and radiative effects of the Mount Pinatubo eruption, J. Geophys. Res.99, 25705-25731. Google Scholar
Lary, D. J., 1997: Catalytic destruction of atmospheric ozone, J. Geophys. Res.102, 21515-21526. Google Scholar
Lehmann, R., 2002: Determination of dominant pathways in chemical reaction systems: An algorithm and its application to stratospheric chemistry, J. Atmos. Chem.41, 297-314. Google Scholar
Mavrovouniotis, M. L., 1992: Synthesis of reaction mechanisms consisting of reversible and irreversible steps. 2. Formalization and analysis of the synthesis algorithm, Ind. Eng. Chem. Res.31, 1637-1653. Google Scholar
Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G., 1990: Computer-aided synthesis of biochemical pathways, Biotechnol. Bioeng.36, 1119-1132. Google Scholar
Milner, P. C., 1964: The possible mechanisms of complex reactions involving consecutive steps, J. Electrochem. Soc.111, 228-232. Google Scholar
Molina, L. T. and Molina, M. J., 1987: Production of Cl2O2 from the self-reaction of the ClO radical, J. Phys. Chem.91, 433-436. Google Scholar
Nevison, C. D., Solomon, S., and Gao, R. S., 1999: Buffering interactions in the modeled response of stratospheric O3 to increased NOx and HOx, J. Geophys. Res.104, 3741-3754. Google Scholar
Noži$#x010D;ka, F., Guddat, J., Hollatz, H., and Bank, B., 1974: Theorie der linearen parametrischen Optimierung, Akademie-Verlag, Berlin. Google Scholar
Rabitz, H., Kramer, M., and Dacol, D., 1983: Sensitivity analysis in chemical kinetics, Ann. Rev. Phys. Chem.34, 419-461. Google Scholar
Ross, M. N., Ballenthin, J. O., Gosselin, R. B., Meads, R. F., Zittel, P. F., Benbrook, J. R., and Sheldon, W. R., 1997a: In-situ measurements of Cl2 and O3 in a stratospheric solid rocket motor exhaust plume, Geophys. Res. Lett.24, 1755-1758. Google Scholar
Ross, M. N., Benbrook, J. R., Sheldon, W. R., Zittel, P. F., and Mc Kenzie, D. L., 1997b: Observations of stratospheric ozone depletion in rocket exhaust plumes, Nature390, 62-64. Google Scholar
Saltelli, A., 1999: Sensitivity analysis: Could better methods be used?, J. Geophys. Res.104, 3789-3793. Google Scholar
Salawitch, R. J., Wofsy, S. C., Gottlieb, E. W., Lait, L. R., Newman, P. A., Schoeberl, M. R., Loewenstein, M., Podolske, J. R., Strahan, S. E., Proffitt, M. H., Webster, C. R., May, R. D., Fahey, D.W., Baumgardner, D., Dye, J. E., Wilson, J. C., Kelly, K. K., Elkins, J.W., Chan, K. R., and Anderson, J. G., 1993: Chemical loss of ozone in the Arctic polar vortex in the winter of 1991-1992, Science261, 1146-1149. Google Scholar
Schilling, C. H., Schuster, S., Palsson, B. O., and Heinrich, R., 1999: Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era, Biotechnol. Prog.15, 296-303. Google Scholar
Schilling, C. H., Letscher, D., and Palsson, B.Ø., 2000: Theory for the systematic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective, J. Theor. Biol.203, 229-248. Google Scholar
Schuster, R. and Schuster, S., 1993: Refined algorithm and computer program for calculating all nonnegative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed, Comp. Appl. Biosci.9, 79-85. Google Scholar
Schuster, S. and Hilgetag, C., 1994: On elementary flux modes in biochemical reaction systems at steady state, J. Biol. Syst.2, 165-182. Google Scholar
Schuster, S., Danekar, T., and Fell, D. A., 1999: Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering, Trends Biotechnol.17, 53-60. Google Scholar
Schuster, S., Hilgetag, C., Woods, J. H., and Fell, D. A., 2002: Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism, J. Math. Biol.45, 153-181. Google Scholar
Seressiotis, A. and Bailey, J. E., 1988: MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways, Biotechnol. Bioeng.31, 587-602. Google Scholar
Shimazaki, T., 1984: The photochemical time constants of minor constituents and their families in the middle atmosphere, J. Atmos. Terr. Phys.46, 173-191. Google Scholar
Turányi, T., 1990: Sensitivity analysis of complex kinetic systems. Tools and applications, J. Math. Chem.5, 203-248. Google Scholar
Von Hohenbalken, B., Clarke, B. L., and Lewis, J. E., 1987: Least distance methods for the frame of homogeneous equation systems, J. Comp. Appl. Math.19, 231-241. Google Scholar
Wennberg, P. O., Cohen, R. C., Stimpfle, R. M., Koplow, J. P., Anderson, J. G., Salawitch, R. J., Fahey, D. W., Woodbridge, E. L., Keim, E. R., Gao, R. S., Webster, C. R., May, R. D., Toohey, D.W., Avallone, L.M., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Chan, K. R., and Wofsy, S. C., 1994: Removal of stratospheric O3 by radicals: in situ measurements of OH, HO2, NO, NO2, ClO, and BrO, Science266, 398-404. Google Scholar