Santa Rosalia revisited: Why are there so many species of bacteria? (original) (raw)
- Bennett AF, Lenski RE & Mittler JE (1992) Evolutionary adaptation to temperature. I Fitness responses of _Escherichia coli_to changes in its thermal environment. Evolution 46: 16-30
Google Scholar - Caccone A, DeSalle R & Powell JR (1988) Calibration in the change in thermal stability of DNA duplexes and degree of base pair mismatch. J. Mol. Evol. 27: 212-216
Google Scholar - Cohan FM (1994) The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143: 965-986
Google Scholar - Cohan FM (1995) Does recombination constrain neutral divergence among bacterial taxa? Evolution 49: 164-175
Google Scholar - Dean AM (1995) A molecular investigation of genotype by environment interactions. Genetics 139: 19-33
Google Scholar - Dykhuizen DE & Dean AM (1994) Predicted fitness changes along and environmental gradient. Evol. Ecol. 8: 1-18
Google Scholar - Fisher RA, Corbert AS & Williams CB (1943) The relation between the number of individuals and the number of species in a random sample of an animal population. J. Anim. Ecol. 12: 42-58
Google Scholar - Griffiths BS, Ritz K & Glover LA (1996) Broad-scale approaches to the determination of siol microbial community structure: Application of the community DNA hybridization technique. Microb. Ecol. 31: 269-280
Google Scholar - Helling RB, Vargas C & Adams J (1987) Evolution of _Escherichia coli_during growth in a constant environment. Genetics 116: 349-358
Google Scholar - Hoke C & Vedros NA (1982) Taxonomy of the Neisseriae: Deoxyribonucleic acid base composition, interspecific transformation, and deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol. 32: 57-66
Google Scholar - Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93: 143-159
Google Scholar - Jiménez L (1990) Molecular analysis of deepsubsurface bacteria. Appl. Environ. Microbiol. 56: 2108-2113
Google Scholar - Lee S & Fuhrman JA (1990) DNA hybridization to compare species composition of natural bacterioplankton assemblages. Appl. Environ. Microbiol. 56: 739-746
Google Scholar - Lenski RE & Bennett AF (1993) Evolutionary response of _Escherichia coli_to thermal stress. Am. Nat. 142: S47-64
Google Scholar - Lenski RE, Rose MR, Simpson SC & Tadler SC (1991) Longterm experimental evolution in _Escherichia coli._I. Adaptation and divergence during 2,000 generations. Am. Nat. 138: 1315-1341
Google Scholar - Lin C & Stahl DA (1995) Taxonspecific probes for the cellulolytic genus _Fibrobacter_reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61: 1348-1351
Google Scholar - Maynard Smith J (1995) Do bacteria have population genetics? In: Baumberg S, Young JPW, Wellington EMH and Saunders JR (eds.) Population Genetics of Bacteria (pp 112). Cambridge University Press, Cambridge
Google Scholar - Ochman H & Wilson AC (1987) Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J.Mol. Evol. 26: 74-86
Google Scholar - Ochman H & Selander RK (1984) Standard reference strains of _Escherichia coli_from natural populations. J. Bacteriol. 157: 690- 693
Google Scholar - Patrick R (1968) The structure of diatom communities in similar ecological conditions. Am. Nat. 102: 173-183
Google Scholar - Pielou EC & Matthewman WG (1966) The fauna of Fomes fomentarius(Linnaeus ex Fries) Kieckx. growing on dead birch in Gatineau Park, Quebec. Can. Ent. 98: 1308-1312
Google Scholar - Preston FW (1948) The commonness, and rarity, of species. Ecology 29: 254-283
Google Scholar - Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43: 185-215, 410-432
Google Scholar - Rosenzweig RF, Sharp RR, Treves DS & Adams J (1994) Microbial evolution in a simple unstructured environment: Genetic differentiation in _Escherichia coli._Genetics 137: 903-917
Google Scholar - Saunders AA (1938) Ecology of the birds of Quaker Run Valley, Allegany State Park, New York. New York State Museum Handbook 16. Albany, N. Y.
- Sepkoski JJ, Jr (1984) A kinetic model of Phanerozoic taxonomic diversity III. PostPaleozoic families and mass extinction. Paleobiology 10: 246-267
Google Scholar - Shen P & Huang HV (1986) Homologous recombination in Escherichia coli: Dependence on substrate length and homology. Genetics 112: 441-457
Google Scholar - Silva PJN (1992) Natural selection of the _lac_operon of _Escherichia coli._Ph.D. Thesis. State University of New York at Stony Brook. 153 pp
Google Scholar - Spratt BG, Smith NH, Zhou J, O'Rourke M & Feil E (1995) The population genetics of pathogenic Neisseria. In: Baumberg S, Young JPW, Wellington EMH and Saunders JR (eds.) Population Genetics of Bacteria (pp 143-160). Cambridge University Press, Cambridge
Google Scholar - Stahl DA (1995) Application of phylogenetically based hybridization probes to microbial ecology. Molec. Ecol. 4: 535-542
Google Scholar - Sugihara G (1980) Minimal community structure: An explanation of species abundance patterns. Am. Nat. 116: 770-787
Google Scholar - Torsvik V, Goksøyr J & Daae FL (1990a) High diversity of DNA in soil bacteria. Appl. Environ. Microbiol. 56: 782-787
Google Scholar - Torsvik V, Salte K, Sørheim R & Goksøyr J (1990b) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56: 776-781
Google Scholar - Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Murry RGE, Stackebrant E, Starr MP & Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464
Google Scholar