Efficient DNA transfection in neuronal and astrocytic cell lines (original) (raw)

Abstract

We have studied different parameters for efficient DNA transfection in various cell types and with different size of the promoter. Here we report that the optimum condition for DNA transfection by electroporation is 350 V/960 μF for PC12, 450V/960 μF C6 cells, and 250 V/500 μF for COS-1 cells. For the human neuroblastoma (SK-N-SH) cells the optimum condition for DNA transfection is by the calcium phosphate method. In promoter mapping studies, a serial deletion approach is commonly used. To optimize transfection we have selected three DNA constructs that varied in size from 4.5 to 12.4 kilobases (kb). We measured the promoter activity of these constructs under conditions of `equal amount', `equimolar', and `equimolar plus carrier DNA to make it equal amount'. We recommend that for comparative purpose, transfection should be carried out under `equimolar condition' without a need to adjust the total amount of DNA by carrier DNA. Taken together, our results suggest that efficient methods for DNA transfection are important to study gene regulation by devising better ways to deliver DNA into the mammalian cells.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham FL & Van der Eb AJ (1973) Virology 52: 456–467
    Google Scholar
  2. Chen C & Okayama H (1987) Mol. Cell. Biol. 7: 2745–2752
    Google Scholar
  3. Schaeffer-Ridder M, Wang Y & Hofschneider PH (1982) Science 215: 166–168
    Google Scholar
  4. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringolds GM & Danielsen M (1987) Proc. Natl. Acad. Sci. USA 84: 7413–7417
    Google Scholar
  5. McCutchan JH & Pagano JS (1968) J. Natl. Cancer Inst. 41: 351–357 121
    Google Scholar
  6. Lopata MA, Cleveland DW & Sollner-Webb B (1984) Nucleic Acids Res. 12: 5707–5711
    Google Scholar
  7. Cone RD & Mulligan RC (1984) Proc. Natl. Acad. Sci. USA 81: 6349–6353
    Google Scholar
  8. Capecchi MR (1980) Cell 22: 479–488
    Google Scholar
  9. Neumann E, Schaefer-Ridder M, Wang Y & Hofschneider PH (1982) EMBO J. 1: 841–845
    Google Scholar
  10. Chu G, Hayakawa H & Berg P (1987) Nucleic Acids Res. 15: 1311–1326
    Google Scholar
  11. Lahiri DK, Nall C & Ge Y (1999) Mol. Brain Res. 71: 32–41
    Google Scholar
  12. Song W & Lahiri DK (1995) Nucleic Acids Res. 23: 3609–3611
    Google Scholar
  13. Xie TD, Sun L & Tsong TY (1990) Biophys. J. 58: 13–19
    Google Scholar
  14. Song W & Lahiri DK (1998) Gene 217: 165–176
    Google Scholar
  15. Lahiri DK & Robakis NK (1991) Mol. Brain Res. 9: 253–257
    Google Scholar
  16. Hay R, Caputo J, Chen TR, Macy M, McClintock P & Reid Y (1988) ATCC Collection Catalogue of Cell Lines and Hybridomas, 7th edn, ATCC, Rockville, MD
    Google Scholar
  17. Higgins GA, Lewis DA, Bahmanyar S, Goldgaber D, Gajdusek DC, Young WG, Morrison JH & Wilson MC (1988) Proc. Natl. Acad. Sci. USA 85: 1297–1301
    Google Scholar
  18. LeBlanc AC, Xue R & Gambetti P (1996) J. Neurochem. 66: 2300–2310
    Google Scholar
  19. Kubiniec RT, Liang H & Hui SW (1990) Biotechniques 8: 1–3
    Google Scholar
  20. Wolf H, Rols MP, Boldt E, Neumann E & Teissie J (1994) Biophys. J. 66: 524–531
    Google Scholar
  21. Nickoloff JA & Reynolds RJ (1992) Anal. Biochem. 205: 237–243
    Google Scholar
  22. Boggs SS, Gregg RG, Borenstein N & Smithies O (1986) Exp. Hematol. 14: 988–994
    Google Scholar
  23. Andreason GL & Evans GA (1988) Biotechniques 6: 650–660
    Google Scholar
  24. Sukharev SL, Klenchin VA, Chernomordil LV & Chizmadzhev YA (1992) Biophys. J. 63: 1320–1327
    Google Scholar
  25. Watanabe SY, Albsoul-Younes AM, Kawano T, Itoh H, Kaziro Y, Nakajima S & Nakajima Y (1999) Neurosci. Res. 33: 71–78
    Google Scholar
  26. Kohrmann M, Haubensak W, Hemraj I, Kaether C, Lessmann VJ & Kiebler MA (1999) J. Neurosci. Res. 58: 831–835
    Google Scholar
  27. Teruel MN, Blanpied TA, Shen K, Augustine GJ & Meyer T (1999) J. Neurosci. Methods 93: 37–48
    Google Scholar

Download references

Author information

Author notes

  1. Chandramallika Ghosh
    Present address: AVI BioPharma, Inc., 4575 SW Research Way, Suite 200, Corvallis, OR, 97333, USA

Authors and Affiliations

  1. Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
    Weihong Song

Authors

  1. Chandramallika Ghosh
    You can also search for this author inPubMed Google Scholar
  2. Weihong Song
    You can also search for this author inPubMed Google Scholar
  3. Debomoy K. Lahiri
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Ghosh, C., Song, W. & Lahiri, D.K. Efficient DNA transfection in neuronal and astrocytic cell lines.Mol Biol Rep 27, 113–121 (2000). https://doi.org/10.1023/A:1007173906990

Download citation