Glial Fibrillary Acidic Protein: GFAP-Thirty-One Years (1969–2000) (original) (raw)

REFERENCES

  1. Eng, L. F., Gerstl, B., and Vanderhaeghen, J. J. 1970. A study of proteins in old multiple sclerosis plaques. Trans. Am. Soc. Neurochem. 1:42.
    Google Scholar
  2. Eng, L. F., Vanderhaeghen, J. J., Bignami, A., and Gerstl, B. 1971. An acidic protein isolated from fibrous astrocytes 1971. Brain Res. 28:351-354.
    Google Scholar
  3. Uyeda, C. T., Eng, L. F., and Bignami, A. 1972. Immunological study of the glial fibrillary acidic protein. Brain Res. 37: 81-89.
    Google Scholar
  4. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T. 1972. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43:429-435.
    Google Scholar
  5. Eng, L. F., Bond, P., and Gerstl, B. 1971. Isolation of myelin proteins from disc acrylamide gels electrophoresed in phenolformic acid-water. Neurobiol. 1:58-63.
    Google Scholar
  6. Malloch, G. D. A., Clark, J. B., and Burnet, F. R. 1987. Glial fibrillary acidic protein in the cytoskeletal and soluble protein fractions of the developing rat brain. J. Neurochem. 48: 299-306.
    Google Scholar
  7. Chiu, F.-C. and Goldman, J. E. 1984. Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J. Neurochem. 42:166-174.
    Google Scholar
  8. Aquino, D. A., Chiu, F. C., Brosnan, C. F., and Norton, W. T. 1988. Glial fibrillary acidic protein increases in the spinal cord of Lewis rats with acute experimental autoimmune encephalitis. J. Neurochem. 51:1085-1096.
    Google Scholar
  9. Bigbee, J. W., Bigner, D. D., Pegram, C., and Eng, L. F. 1983. Study of glial fibrillary acidic protein in a human glioma cell line grown in culture and as a solid tumor. J. Neurochem. 40: 460-467.
    Google Scholar
  10. DeArmond, S. J., Fajardo, M., Naughton, S. A., and Eng, L. F. 1983. Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res. 262:275-282.
    Google Scholar
  11. Nelson, W. J. and Traub, P. 1983. Proteolysis of vimentin and desmin by the Ca2+-activated proteinase specific for these intermediate filament proteins. Mol. Cell Biol. 3:1146-1156.
    Google Scholar
  12. Schlaepfer, W. W. and Zimmerman, V.-J. P. 1981. Calcium-mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem. Res. 6:243-255.
    Google Scholar
  13. Johnson, L. and Sinex, F. M. 1974. On the relationship of brain filaments to microtubules. J. Neurochem. 22:321-326.
    Google Scholar
  14. Dahl, D. 1976. Glial fibrillary acidic protein from bovine and rat brain degradation in tissues and homogenates. Biochem. Biophys. Acta 420:142-154.
    Google Scholar
  15. Dahl, D. 1976. Isolation and initial characterization of glial fibrillary acidic protein from chicken, turtle, frog, and fish central nervous system. Biochim. Biophys. Acta 446:41-50.
    Google Scholar
  16. Dahl, D. and Bignami, A. 1976. Immunogenic properties of the glial fibrillary acidic protein. Brain Res. 116:150-157.
    Google Scholar
  17. Chan, P. H., Huston, J. S., Moo-Penn, W. F., Dahl, D., and Bignami, A. 1977. Biochemical studies related to CNS regeneration: Isolation and partial characterization of urea-soluble gliofibrillary acidic protein from bovine brain. Proc. Annu. Maine Biomed. Symp. 2:496-524.
    Google Scholar
  18. Wisniewski, H., Shelanski, M. L., and Terry, R. D. 1968. Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol. 38:224-229.
    Google Scholar
  19. Wisniewski, H., Terry, R. C., and Hirano, A. 1971. Neurofibrillary pathology. J. Neuropathol. Exp. Neurol., 29:173-181.
    Google Scholar
  20. Gaskin, F. and Shelanski, M. L. 1976. Microtubules and intermediate filaments. Essays Biochem. 12:115-146.
    Google Scholar
  21. Iqbal, K., Grundke-Iqbal, I., Wisniewski, H. M., and Terry, R. D. 1977. On neurofilament and neurotubule proteins from human autopsy tissue. J. Neurochem. 29:417-424.
    Google Scholar
  22. Dahl, D. and Bignami, A. 1977. Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve. J. Comp. Neurol. 176:645-657.
    Google Scholar
  23. Dahl, D. and Bignami, A. 1976. Isolation from peripheral nerve of a protein similar to the glial fibrillary acidic protein. FEBS Lett. 66:281-284.
    Google Scholar
  24. Yen, S. H., Dahl, D., Schachner, M., and Shelanski, M. L. 1976. Biochemistry of the filaments of brain. Proc. Natl. Acad. Sci. USA 73:529-533.
    Google Scholar
  25. Davison, P. F. 1975. Neuronal fibrillar proteins and axoplasmic transport. Brain Res. 100:73-80.
    Google Scholar
  26. Davison, P. F. and Hong, B. S. 1977. Filaments in nervous tissue and muscle cells. Int. Meet. Int. Soc. Neurochem. 6th, Abstracts, p. 106.
  27. Day, W. A. 1977. Solubilization of neurofilaments from central nervous system myelinated nerve. J. Ultrastruct. Res. 60:362-372.
    Google Scholar
  28. Goldman, J. E., Schaumburg, H. H., and Norton, W. T. 1978. Isolation and characterization of glial filaments and neurofilaments from human brain. Similarity of the major protein components. J. Cell Biol. 78:426-444.
    Google Scholar
  29. Lee, V., Yen, S. H., and Shelanski, M. L. 1977. Biochemical correlates of astrocytic proliferation in the mutant Staggerer mouse. Brain Res. 128:389-392.
    Google Scholar
  30. DeVries, G. H., Eng, L. F., Lewis, D. H., and Hadfield, M. G. 1976. The protein composition of bovine myelin-free axons. Biochim. Biophys. Acta 439:133-145.
    Google Scholar
  31. Eng, L. F., DeVries, G. H., Lewis, D. L., and Bigbee, J. W. 1976. Specific antibody to the major 47,000 MW protein fraction of bovine myelin-free axons. Fed. Proc. Fed. Am. Soc. Exp. Biol. 35:1766.
    Google Scholar
  32. Bignami, A. and Dahl, D. 1977. Specificity of the glial fibrillary acidic protein for astroglia. J. Histochem. Cytochem. 25:466-469.
    Google Scholar
  33. Liem, R. K. H., Yen, S. H., Salomon, G. D., and Shelanski, M. L. 1978. Intermediate filaments in nervous tissue. J. Cell Biol. 79:637-645.
    Google Scholar
  34. Schachner, M., Smith, C., and Schoonmaker, G. 1978. Immunological distinction between neurofilament and glial fibrillary acidic protein by mouse antisera and their immunohistological characterization. Dev. Neurosci. 1:1-14.
    Google Scholar
  35. Schlaepfer, W. W., Freeman, L. A., and Eng, L. F. 1979. Studies of human and bovine spinal nerve roots and the evagination of CNS tissues into the nerve root entry zone. Brain Res. 177: 219-229.
    Google Scholar
  36. Chiu, F.-C., Korey, B., and Norton, W. T. 1980. Intermediate filaments from bovine, rat and human CNS. Mapping analysis of the major proteins. J. Neurochem. 34:1149-1159.
    Google Scholar
  37. Eng, L. F. 1985. Glial fibrillary acidic protein: The major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8:203-214.
    Google Scholar
  38. McLendon, R. E. and Bigner, D. D. 1994. Immunohistochemistry of the glial fibrillary acidic protein: Basic and applied considerations. Brain Pathol. 4:221-228.
    Google Scholar
  39. Eng, L. F. and Ghirnikar, R. S. 1994. GFAP and astrogliosis. Brain Pathol. 4:229-237.
    Google Scholar
  40. Inagaki, M., Nakamura, Y., Masatoshi, T., Nushimura, T., and Inagaki, N. 1994. Glial fibrillary acidic protein: Dynamic property and regulation by phosphorylation. Brain Pathol. 4:239-243.
    Google Scholar
  41. Brenner, M. 1994. Structure and transcriptional regulation of the GFAP gene. Brain Pathol. 4:245-257.
    Google Scholar
  42. Laping, N. J., Teter, B., Nichols, N. R., Rozovsky, I., and Finch, C. E. 1994. Glial fibrillary acidic protein: Regulation by hormones, cytokines, and growth factors. Brain Pathol. 4:259-275.
    Google Scholar
  43. Brenner, M. and Messing, A. 1996. GFAP Transgenic Mice. Methods: A companion to methods in enzymology. 10:351-364.
    Google Scholar
  44. Eng, L. F. and Lee, Y. L. 1995. Intermediate filaments in astrocytes. In Neuroglia, pp. 650-667. H. Kettermann and B. R. Ransom, eds. Oxford University Press.
  45. Eng, L. F. and Lee, Y. L. 1998. Glial response to injury, disease, and aging. In astrocytes in brain aging and neurodegeneration, pp. 71-89. H. M. Schipper, ed. R. G. Landes Co., Georgetown, TX.
    Google Scholar
  46. Eddleston, M. and Mucke, L. 1993. Molecular profile of reactive astrocytes; implications for their role in neurologic diseases. Neurosci. 54:15-36.
    Google Scholar
  47. Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A., and Finch, C. E. 1993. GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14:421-429.
    Google Scholar
  48. Hallpike, J. F., Adams, C. W. M., and Tourtellotte, W. W. 1983. Multiple Sclerosis. Pathology, diagnosis and management, Williams & Wilkins: Baltimore.
    Google Scholar
  49. Schaumburg, H. H., Powers, J. M., Raine, C. S., Suzuki, K., and Richardson, E. P. 1975. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch Neurol. 33:577-591.
    Google Scholar
  50. Goldman, J. E., Schaumburg, H. H., and Norton, W. T. 1978. Isolation and characterization of glial filaments from human brain. J. Cell Biol. 78:426-440.
    Google Scholar
  51. Eng, L. F., Lee, Y. L., Kwan, H., Brenner, M., and Messing, A. 1998. Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J. Neurosci. Res. 53:353-360.
    Google Scholar
  52. Calne, D. B. 1994. Neurodegenerative Diseases, ed. WB Saunders, Philadelphia.
    Google Scholar
  53. Duffy, P. E., Rapoport, M., and Graf, L. 1980. Glial fibrillary acidic protein and Alzheimer-type senile dementia. Neurol. 30:778-782.
    Google Scholar
  54. Schechter, R., Yen, S.-H. C., and Terry, R. D. 1981. Fibrous astrocytes in senile dementia of the Alzheimer type. J. Neuropathol. Exp. Neurol. 40:95-101.
    Google Scholar
  55. Mancardi, G. L., Liwnicz, B. H., and Mandybur, T. I. 1983. Fibrous astrocytes in Alzheimer's disease and senile dementia of Alzheimer's type. An immunohistochemical and ultrastructural study. Acta Neuropathol. (Berl.) 61:76-80.
    Google Scholar
  56. Beach, T. B. and McGeer, E. G. 1988. Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer disease visual cortex. Brain Res. 463:357-361.
    Google Scholar
  57. Beach, T. G., Walker, R., and McGeer, E. G. 1989. Patterns of gliosis in Alzheimer's disease and aging cerebrum. Glia 2: 420-436.
    Google Scholar
  58. Mandybur, T. I. 1989. Cerebral amyloid angiopathy and astrocytic gliosis in Alzheimer's disease. Acta Neuropathol. (Berl.) 78:329-331.
    Google Scholar
  59. Vijayan, V., Geddes, J. W., Anderson, K. J., Chang-Chui, H., Ellis, W. G., and Cotman, C. W. 1991. Astrocyte hypertrophy in the Alzheimer's disease hippocampal formation. Exp. Neurol. 112:72-78.
    Google Scholar
  60. Joachim, C. L., Morris, J. H., and Selkoe, D. J. 1989. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. Am. J. Pathol. 135:309-319.
    Google Scholar
  61. Rozemuller, J. M., Eikelenboom, P., Stam, F. C., Beyreuther, K., and Masters, C. L. 1989. A4 protein in Alzheimer's disease: primary and secondary cellular events in extracellular amyloid deposition. J. Neuropathol. Exp. Neurol. 48:674-691.
    Google Scholar
  62. Suenaga, T., Hirano, A., Llena, J. F., Ksiezak-Reding, H., Yen, S. H., and Dickson, D. W. 1990. Modified immunocytochemical studies in cerebellar plaques in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 49:31-40.
    Google Scholar
  63. Malamud, N. 1972. Neuropathology of organic brain syndromes associated with aging. In: Aging and the Brain, Gaitz, C. (ed.), pages 63-87, Plenum: New York.
    Google Scholar
  64. Burger, P. C. and Vogel, S. 1973. The development of pathologic changes of Alzheimer's disease and senile dementia in patients with Down's syndrome. Am. J. Pathol. 73:457-476.
    Google Scholar
  65. Mann, D. M. A. 1988. The pathological association between Down's syndrome and Alzheimer's disease. Mech. Aging Dev. 43:99-136.
    Google Scholar
  66. Murphy, G. M., Eng, L. F., Ellis, W. G., Perry, G., Meissner, L. C., and Tinklenberg, J. R. 1990. Antigenic profile of plaques and neurofibrillary tangles in the amygdala in Down's syndrome: a comparison with Alzheimer's disease. Brain Res. 537:102-108.
    Google Scholar
  67. Murphy, G. M., Jr., Murphy, E., Greenberg, B. D., Cordell, B., Eng, L. F., Elis, W. G., Forno, L. S., Salamat, S., Gonzalez-DeWitt, P. A., Lowry, D. E., and Tinklenberg, J. R. 1991. Alzheimer's disease: beta-amyloid precursor protein expression in plaques varies among cytoarchitectonic areas of the medial temporal lobe. Neurosci. Lett. 131:100-104.
    Google Scholar
  68. Murphy, G. M., Jr., Ellis, W. G., Lee, Y. L., Stultz, K. E., Shrivastava, R., Tinklenberg, J. R., and Eng, L. F. 1992. Astrocytic gliosis in the amygdala in Down's syndrome and Alzheimer's disease. In: Progress in Brain Research, Vol. 94, Yu, A. C. H., Hertz, L., Norenberg, M. D., Sykova, E., Waxman, S. G. (eds.), Chapter 40, pp. 475-483, Elsevier Science Publishers B.V. Amsterdam.
    Google Scholar
  69. Michetti, F., Larocca, L. M., Rinelli, A., and Lauriola, L. 1990. Immunocytochemical distribution of S-100 protein in patients with Down's syndrome. Acta Neuropathol. (Berl.) 80:475-478.
    Google Scholar
  70. Griffin, W. S. T., Stanley, L. C., Ling, C., White, L., MacLeod, V., Perrot, L. J., White, C. L., and Araoz, C. 1989. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86:7611-7615.
    Google Scholar
  71. Goodison, K. L., Parhad, I. M., White, C. L. III, Sima, A. A., and Clark, A. W. 1993. Neuronal and glial gene expression in neocortex of Down's syndrome and Alzheimer's disease. J. Neuropathol. Exp. Neurol. 52:192-198.
    Google Scholar
  72. Lefrancois, T., Fages, C., Peschanski, M., and Tardy M. 1997. Neuritic outgrowth associated with astroglial phenotypic changes induced by antisense glial fibrillary acidic protein (GFAP) mRNA in injured neuron-astrocyte cocultures. J. Neurosci. 17:4121-4128.
    Google Scholar
  73. Chen, W. J. and Liem, R. K. 1994: Reexpression of glial fibrillary acidic protein rescues the ability of astrocytoma cells to form processes in response to neurons. J. Cell Biol. 127: 813-823.
    Google Scholar
  74. Weinstein, D. E., Shelanski, M. L., and Liem, R. K. 1991. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J. Cell Biol. 112:1205-1213.
    Google Scholar
  75. Yu, A. C., Lee, Y. L., Eng, L. F. 1991. Inhibition of GFAP synthesis by antisense RNA in astrocytes. J. Neurosci. Res. 30(1):72-79.
    Google Scholar
  76. Yu, A. C., Lee, Y. L., and Eng, L. F. 1993. Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J. Neurosci. Res. 34:295-303.
    Google Scholar
  77. Ghirnikar, R. S., Yu, A. C., and Eng, L. F. 1994. Astrogliosis in culture: III. Effect of recombinant retrovirus expressing antisenseglial fibrillary acidic protein RNA. J. Neurosci. Res. 38:376-385.
    Google Scholar
  78. Rutka, J. T., Hubbard, S. L., Fukuyama, K., Matsuzawa, K., Dirks, P. B., and Becker, L. E. 1994. Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion and adhesion of human astrocytoma cells. Cancer Res. 54:3267-3272.
    Google Scholar
  79. Rutka, J. T., Ackerley, C., Hubbard, S. L., Tilup, A., Dirks, P. B., Jung, S., Ivanchuk, S., Kurimoto, M., Tsugu, A., and Becker, L. E. 1998. Characterization of glial filament-cytoskeletal interactions in human astrocytomas: an immuno-ultrastructural analysis. European J. Cell Biol. 76:279-287.
    Google Scholar
  80. Rutka, J. T., Ivanchuk, S., Mondal, S., Taylor, M., Sakai, K., Dirks, P., Jun, P., Jung, S., Becker, L. E., and Ackerley, C. 1999. Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. International J. of Developmental Neurosci. 17:503-515.
    Google Scholar
  81. Beguin, P., Shooter, E. M., and Eng, L. F. 1980. Cell-free synthesis of glial fibrillary acidic protein. Neurochem. Res. 5:513-521.
    Google Scholar
  82. Deck, J. H. N., Eng, L. F., and Bigbee, J. 1976. A preliminary study of glioma morphology using the peroxidase-antiperoxidase method for the GFA protein. J. Neuropathol. Exp. Neurol. 35:362.
    Google Scholar
  83. Deck, J. H. N., Eng, L. F., Bigbee, J., and Woodcock, S. M. 1978. The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol. (Berl.) 42:183-190.
    Google Scholar
  84. Duffy, P. E., Graf, L., and Rapport, M. M. 1977. Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors. J. Neuropathol. Exp. Neurol. 36:645-652.
    Google Scholar
  85. Eng, L. F. and Rubinstein, L. J. 1978. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J. Histochem. Cytochem. 26:513-522.
    Google Scholar
  86. Amaducci, L., Forno, K. I., and Eng, L. F. 1981. Glial fibrillary acidic protein in cryogenic lesions of the rat brain. Neurosci. Letts. 21:27-32.
    Google Scholar
  87. Smith, M. E., Somera, F. P., and Eng, L. F. 1983. Immunocytochemical staining for glial fibrillary acidic protein and the metabolism of cytoskeletal proteins in experimental allergic encephalomyelitis. Brain Res. 264:241-253.
    Google Scholar
  88. Cutler, R. W. P., Lorenzo, A. V., and Barlow, C. F. 1967. Brain vascular permeability to I125 gamma globulin and leukocytes in allergic encephalomyelitis. J. Neuropathol. Exp. Neurol. 26:558-571.
    Google Scholar
  89. Juhler, M., Barry, D. I., Offner, H., Konat, G., Klinken, L., and Paulson, O. B. 1984. Blood-brain and blood-spinal cord barrier permeability during the course of experimental allergic encephalomyelitis in the rat. Brain Res. 302:347-355.
    Google Scholar
  90. Kimelberg, H. K., Bourke, R. S., Stieg, P. E., Barron, K. D., Hirata, H., Pelton, E. W., and Nelson, L. R. 1982. Swelling of astroglia after injury to the central nervous system: Mechanisms and consequences. In R. G. Grossman and P. L. Gildenberg (Eds.), Head Injury: Basic and Clinical Aspects, pp. 31-44. Raven Press, New York.
    Google Scholar
  91. Lee, J. C. 1982. Anatomy of the blood-brain barrier under normal and pathological conditions. In W. Haymaker and R. D. Adams (Eds.), Histology and Histopathology of the Nervous System, pp. 798-890. Charles Thomas
  92. Miquel, J., Foncin, J.-F., Gruner, J. E., and Lee, J. C. 1982. Cerebral edema. In W. Haymaker and R. D. Adams (Eds.), Histology and Histopathology of the Nervous System, Charles Thomas, pp. 871-919.
  93. Eng, L. F., D'Amelio, F. E., and Smith, M. E. 1989. Dissociation of GFAP intermediate filaments in EAE: Observations in the lumbar spinal cord. Glia 2:308-317.
    Google Scholar
  94. Lewis, S. A. and Cowan, N. J. 1985. Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. J. Neurochem. 45:913-919.
    Google Scholar
  95. Hagiwara, N., Imada, S., and Sueoka, N. 1993. Cell type specific segregation of transcriptional expression of glial genes in the rat peripheral neurotumor RT4 cell lines. J. Neurosci. Res. 36:646-656.
    Google Scholar
  96. Condorelli, D. F., Nicoletti, V. G., Barresi, V., Conticello, S. G., Caruso, A., Tendi, E. A., and Giuffrida Stella, A. M. 1999. Structural features of the rat GFAP gene and identification of a novel alternative transcript. J. Neurosci. Res. 56: 219-228.
    Google Scholar
  97. Mucke, L. and Rockenstein, E. M. 1993. Prolonged delivery of transgene products to specific brain regions by migratory astrocyte grafts. Transgenics 1:3-9.
    Google Scholar
  98. Holland, E. C. and Varmus, H. E. 1998. Basic fibroblast growth factor induces cell migration and. Proc. Natl. Acad. Sci. USA 95:1218-1223.
    Google Scholar
  99. Carpenter, M. K., Winkler, C., Fricker, R., Emerich, D. F., Wong, S. C., Greco, C., Chen, E. Y., Chu, Y., Kordower, J. H., Messing, A., Bjorklund, A., and Hammang, J. P. 1997. Generation and transplantation of EGF responsive neural stem cells. Exp. Neurol. 148:187-204.
    Google Scholar
  100. Kordower, J. H., Chen, E. Y., Winkler, C., Fricker, R., Charles, V., Messing, A., Mufson, E. J., Wong, S. C., Rosenstein, J. M., Bjorklund, A., Emerich, D. F., Hammang, J., and Carpenter, M. K. 1997. Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF. J. Comp. Neurol. 387:96-113.
    Google Scholar
  101. McKie, E. A., Graham, D. I., and Brown, S. M. 1998. Selective astrocytic transgene expression in vitro and in vivo from. Gene Therapy 5:440-450.
    Google Scholar
  102. Gomes, F. C., Garcia-Abreu, J., Galou, M., Paulin, D., and Moura Neto, V. 1999. Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia 26:97-108.
    Google Scholar
  103. Quintana, J. G., Lopez-Colberg, I., and Cunningham, L. A. 1998. Use of GFAP-lacZ transgenic mice to determine astrocyte fate in grafts of embryonic ventral midbrain. Brain Res. Dev. Brain Res. 105:147-151.
    Google Scholar
  104. Sun, Y., Wu, S., Bu, G., Onifade, M. K., Patel, S. N., LaDu, M. J., Fagan, A. M., and Holtzman, D. M. 1998. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic. J. Neurosci. 18:3261-72.
    Google Scholar
  105. Smith, J. D., Sikes, J., and Levin, A. J. 1998. Human apolipoprotein E allele-specific brain expressing transgenic mice. Neurobiology of Aging 19:407-413.
    Google Scholar
  106. Delaney, C. L., Brenner, M., and Messing, A. 1996. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J. Neurosci. 16:6908-18.
    Google Scholar
  107. Bush, T. G., Puvanachandra, N., Horner, C. H., Polito, A., Ostenfeld, T., Svendsen, C. N., Mucke, L., Johnson, M. H., and Sofroniew, M. V. 1999. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes in adult transgenic mice. Neuron 23:297-308.
    Google Scholar
  108. Galbreath, E., Kim, S. J., Park, K., Brenner, M., and Messing, A. 1995. Overexpression of TGF-beta 1 in the central nervous system of transgenic mice results in hydrocephalus. J. Neuropathol. Exp. Neurol. 54:339-349.
    Google Scholar
  109. Segovia, J., Vergara, P., and Brenner, M. (1998). Astrocyte-specific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioral recovery in experimental Parkinsonism. Gene Therapy 5:1650-1655.
    Google Scholar
  110. Trejo, F., Vergara, P., Brenner, M., and Segovia, J. 1999. Gene therapy in a rodent model of Parkinson's disease using differentiated C6 cells expressing a GFAP-tyrosine hydroxylase transgene. Life Sciences 65:483-491.
    Google Scholar
  111. Cortez, N., Trejo, F., Vergara, P., and Segovia, J. 2000. Primary astrocytes retrovirally transduced with a tyrosine hydroxylase transgene driven by a glial-specific promoter elicit behavioral recovery in experimental Parkinsonism. J. Neurosci. Res. 59:39-46.
    Google Scholar
  112. Yao, C. P., Allen, J. W., Conklin, D. R., and Aschner, M. 1999. Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity. Brain Res. 818:414-420.
    Google Scholar
  113. Carr, D. J., Veress, L. A., Noisakran, S., and Campbell, I. L. 1998. Astrocyte targeted expression of IFN-alpha 1 protects mice from acute ocular herpes simplex virus type 1 infection. J. Immunol. 161:4859-4865.
    Google Scholar
  114. Carrasco, J., Hernandez, J., Gonzalez, B., Campbell, I. L., and Hidalgo, J. 1998. Localization of metallothionein-I and-III expression in the CNS of transgenic mice with astrocyte-targeted expression of interleukin 6. Exp. Neurol. 153:184-194.
    Google Scholar
  115. Lundkvist, J., Sundgren-Andersson, A. K., Tingsborg, S., Ostlund, P., Engfors, C., Alheim, K., Bartfai, T., Iverfeldt, K., and Schultzberg, M. 1999. Acute-phase responses in transgenic mice with CNS overexpression of IL-1 receptor antagonist. Am. J. Physiol. 276:R644-651.
    Google Scholar
  116. Campbell, I. L. 1998. Transgenic mice and cytokine actions in the brain: bridging the gap between structural and functional neuropathology. Brain Res. Brain Res. Reviews 26:327-336.
    Google Scholar
  117. Ramer, M. S., Kawaja, M. D., Henderson, J. T., Roder, J. C., and Bisby, M. A. 1998. Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. Neurosci. Lett. 251: 53-56.
    Google Scholar
  118. Raeber, A. J., Race, R. E., Brandner, S., Priola, S. A., Sailer, A., Bessen, R. A., Mucke, L., Manson, J., Aguzzi, A., Oldstone, M. B. et al. 1997. Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16:6057-6065.
    Google Scholar
  119. Iwaki, T., Kume-Iwaki, A., Liem, R. K. H., and Goldman, J. E. 1993. alpha-beta crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am. J. Pathol. 143:487-495.
    Google Scholar
  120. Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., and Brenner, M. 1998. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am. J. Pathol. 152:391-398.
    Google Scholar
  121. Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., and Messing, A. 2000. Mutations in GFAP associated with infantile, juvenile, and adult form of Alexander's Disease. (Abstr.) J. Neurochem. 74(Suppl.): S4B.
    Google Scholar
  122. Pekny, M., Leveen, P., Pekna, M., Eliasson, C., Berthold, C. H., Westermark, B., and Betsholtz, C. 1995. Mice lacking GFAP display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14:1590-1598.
    Google Scholar
  123. Gomi, H., Yokoyama, T., Fujimoto, K., Ikeda, T., Katoh, A., Itoh, T., and Itohara, S. 1995. Mice devoid of the Glial fibrillary acidic protein develop normally and are suseptible to scrapie prions. Neuron 14:29-41.
    Google Scholar
  124. Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. C., Cowan, N. J., Kucherlapati, R., and Raine, C. S. 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607-615.
    Google Scholar
  125. McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., and Messing, A. 1996. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93:6361-6366.
    Google Scholar
  126. Pekny, M., Eliasson, C., Chien, C. L., Kindblom, L. G., Liem, R., Hamberger, A., and Betsholtz, C. 1998. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Expt. Cell Res. 239:332-343.
    Google Scholar
  127. Tatzelt, J., Maeda, N., Pekny, M., Yang, S. L., Betsholtz, C., Eliasson, C., Cayetano, J., Camerino, A. P., DeArmond, S. J., and Prusiner, S. B. 1996. Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurol. 47: 449-453
    Google Scholar
  128. Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Wallen, A., Perlmann, T., Lendahl, U., Betsholtz, C., Berthold, C. H., and Frisen, J. 1999. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145:503-514.
    Google Scholar
  129. Galou, M., Colucci-Guyon, E., Ensergueix, D., Ridet, J. L., Gimenez y Ribotta, M., Privat, A., Babinet, C., and Dupouey, P. 1996. Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J. Cell Biol. 133: 853-863.
    Google Scholar
  130. Ding, M., Eliasson, C., Betsholtz, C., Hamberger, A., and Pekny, M. 1998. Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res. Molec. Brain Res. 62:77-81.
    Google Scholar
  131. Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J. J., Wakatsuki, H., Fujisaki, T., Fujimoto, K., Katoh, A., Ikeda, T., Chen, C., Thompson, R. F., and Itohara, S. 1996. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587-599.
    Google Scholar
  132. Liedtke, W., Edelmann, W., Chiu, F. C., Kucherlapati, R., and Raine, C. S. 1998. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am. J. Pathol. 152:251-259.
    Google Scholar
  133. Nawashiro, H., Messing, A., Azzam, N., and Brenner, M. 1998. Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. NeuroReport. 9:1691-1696.
    Google Scholar
  134. Wang, X., Messing, A., and David, S. 1997. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Expt. Neurol. 148:568-576.
    Google Scholar
  135. Raine, C. S. 1985. Editorial, J. Neuroimmunol. 8:(Issue 4-6).

Download references