IGF-I: An Essential Factor in Terminal End Bud Formation and Ductal Morphogenesis (original) (raw)
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime View plans
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
REFERENCES
- W. Ruan, C. B. Newman, and D. L. Kleinberg (1992). Intact and aminoterminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and developinsulin-ment. Proc. Natl. Acad. Sci. U.S.A. 89:10872–10876.
Google Scholar - R. P. Reece, C. W. Turner, and R. T. Hill (1936). Mammary gland development in the hypophysectomized albino rat. Proc. Soc. Exp. Biol. Med. 34:204–217.
Google Scholar - W. U. Gardner, and A. White (1941). Mammary growth in hypophysectomized male mice receiving estrogen prolactin. Proc. Soc. Exp. Biol. Med. 48:590–592.
Google Scholar - A. A. Lewis, E. T. Gomez, and C.W. Turner (1942). Mammary gland development with mammogen I in the castrated and the hypophysectomized rat. Endocrinology 30:37–47.
Google Scholar - W. R. Lyons, C. H. Li, and R. E. Johnson (1958). The hormonal control of mammary growth and lactation. Rec. Prog. Horm. Res. 14:219–248.
Google Scholar - S. Nandi (1958). Endocrine control of mammary-gland develgenesis opment and function in the C3 11/HE Crgl mouse. J. Natl. Cancer Inst. 21(6):1039–1062.
Google Scholar - W. R. Lyons (1993). Hormonal synergism in mammary growth. Proc Royal Soc. (London) 149:303–325.
Google Scholar - W. R. Lyons, R. E. Johnson, R. D. Cole, and C. H. Li (1955). Mammary growth and lactation in male rats. In R. W. Smith, O. H. Gaebler, and C. N. H. Long, (eds.), The Hypophyseal Growth Hormone, Nature and Actions, New York, McGraw Hill, pp. 461–472.
Google Scholar - D. L. Kleinberg, W. Niemann, E. Flamm, P. Cooper, G. Babit-sky, and Q. Valensi (1985). Primate mammary development: Effects of hypophysectomy, prolactin inhibition and growth hormone administration. J. Clin. Invest. 75:1943–1950.
Google Scholar - D. L. Kleinberg, W. F. Ruan, V. Catanese, C. B. Newman, and M. Feldman (1990). Nonlactogenic effects of growth hormone on growth and insulin-like growth factor-I messenger ribonucleic acid of rat mammary gland. Endocrinology 126: 3274–3276.
Google Scholar - D. L. Kleinberg (1997). Early mammary development: Growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2:49–57.
Google Scholar - M. Feldman, W. Ruan, B. C. Cunningham, J. A. Wells, and D. L. Kleinberg (1993). Evidence that the growth hormone receptor mediates differentiation and development of the mamevidence mary gland. Endocrinology 133:1602–1608.
Google Scholar - Y. N. Ilkbahar, G. Thordarson, I. G. Camarillo, and F. Tala-mantes (1999). Differential expression of the growth hormone receptor and growth hormone-binding protein in epithelia and stroma of the mouse mammary gland at various physiological stages. J. Endocrinol. 161:77–87.
Google Scholar - C. W. Daniel and G. B. Silberstein (1987). Postnatal develop-ment of the rodent mammary gland. In M. C. Neville and C.W. Daniel, (eds.), The Mammary Gland: Development, Regulation, and Function, New York, Plenum Press, pp. 1–36.
Google Scholar - D. Medina (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 1:5–19.
Google Scholar - C. B. Newman, H. Cosby, H. G. Friesen, M. Feldman, P. Cooper, V. DeCrescito, M. Pilon, and D. L. Kleinberg (1987). Evidence for a nonprolactin, nongrowth hormone mammary mitogen in the human pituitary gland. Proc. Natl. Acad. Sci. U.S.A. 84:8110–8114.
Google Scholar - W. Ruan, V. Catanese, R. Wieczorek, M. Feldman, and D. L. Kleinberg (1995). Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136:1296–1302.
Google Scholar - M. M. Richert and T. L. Wood (1999). The Insulin-like growth factors (IGF) and the IGF Type I receptor during postnatal growth of the murine mammary gland: Sites of messenger ribonucleic acid expression and potential functions. Endocri-nology 140:454–461.
Google Scholar - D. L. Kleinberg and W. Ruan (1999). The crucial roles of developinsulin-like growth factor I and growth hormone in mammary gland development. In D. LeRoith (ed), Advances in Molecular and Cellular Endocrinology, Stamford, JAI Press Inc. pp. 225–238.
Google Scholar - R. C. Hovey, H. W. Davey, D. D. S. Mackenzie, and T. B. McFadden (1998). Ontogeney and epithelial-stromal interac-tions regulate IGF expression in the ovine mammary gland. Mol. Cell Endocrinol. 136:139–144.
Google Scholar - P. D. Walden, W. F. Ruan, M. Feldman, and D. L. Kleinberg (1998). Evidence that the mammary gland fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 139:659–662.
Google Scholar - W. Ruan and D. L. Kleinberg (1999). Insulin-like growth factor-I is essential for terminal end bud formation and ductal morpho-develgenesis during mammary development. Endocrinology 140: 5075–5081, 1999.
Google Scholar - R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol. Endocri-nol. 11:801–811.
Google Scholar - R. C. Humphreys, J. P. Lydon, B.W. O'Malley, and J. M. Rosen (1997). Use of PRKO mice to study the role of progesterone in mammary gland development. J. Mam. Gland Biol. Neopla-sia 2:343–354.
Google Scholar - S. Coleman, G. B. Silberstein, and C.W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev. Biol. 127: 304–315.
Google Scholar - S. Z. Haslam and G. Shyamala (1981). Relative distribution of estrogen and progesterone receptors among epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 108:825–830.
Google Scholar - S. Z. Haslam and K. A. Nummy (1992). The ontogeny and cellular disltribution of estrogen receptors in normal mouse mammary gland. J. Steroid Biochem. Molec. Biol. 42:589–595.
Google Scholar - G. B. Silberstein, K. Van Horn, G. Shyamala, and C.W. Daniel (1994). Essential role of endogenous estrogen in directly stimu-lating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84–90.
Google Scholar - M. Feldman, W. Ruan, I. Tappin, R. Wieczorek, and D. L. Kleinberg (1999). The effect of GH on estrogen receptor expression in the rat mammary gland. J. Endocrinol. 163:515–522, 1999.
Google Scholar - D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J. M. Rosen (1996). Targeted expression of des(1–3) human insulin-like growth factor I (IGF-I) in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 136:321–330.
Google Scholar - S. Neuenschwander, A. Schwartz, T. L. Wood, C. T. J. Roberts, L. Henninghausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97:2225–2232.
Google Scholar