The Midbrain Dopaminergic System: Anatomy and Genetic Variation in Dopamine Neuron Number of Inbred Mouse Strains (original) (raw)
REFERENCES
Arts, M. P., andBemelmans, F. F., andCools, A. R. (1998). Role of the retrorubral nucleus in striatally elicited orofacial dyskinesia in cats: Effects of muscimol and bicuculline. Psychopharmacology (Berlin)140: 150-156. Google Scholar
Bailey, D. W. (1981). Strategic uses of recombinant inbred and congenic strains in behavior genetics research. In Gershon, E. S.,Matthysse, S.,Braekefield, X. O., andCiaranello, R. D. (eds.), Genetic Research Strategies for Psychobiology and Psychiatry, Boxwood Press, Pacific Grove, CA, pp. 189-198. Google Scholar
Baker, H.,Joh, T. H., andReis, D. J. (1980). Genetic control of number of midbrain dopamine-neurons in inbred strains of mice: Relationship to size and neuronal density of striatum. Proc. Natl. Acad. Sci. USA77: 4369-4373. Google Scholar
Baker, H.,Joh, T. H., andReis, D. J. (1982). Time of appearance during development of differences in nigrostriatal tyrosine hydroxylase activity in two inbred mouse strains. Brain Res.256: 157-165. Google Scholar
Baving, L.,Laucht, M., andSchmidt, M. H. (1999). Atypical frontal brain activation in ADHD: Preschool and elementary school boys and girls. J. Am. Acad. Child Adolesc. Psychiatry38: 1363-1371. Google Scholar
Beninger, R. J. (1983). The role of dopamine in locomotor activity and learning. Brain Res.287: 173-196. Google Scholar
Brodie, M. S., andAppel, S. B. (2000). Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation. Alcohol Clin. Exp. Res.24: 1120-1124. Google Scholar
Ciaranello, R. D., andBoehme, R. E. (1981). Biochemical genetics of neurotransmitter enzymes and receptors: Relationships to schizophrenia and other major psychiatric disorders. Clin. Genet.19: 358-372. Google Scholar
Ciaranello, R. D.,Barchas, R.,Kessler, S., andBarchas, J. D. (1972). Catecholamines: Strain differences in biosynthetic enzyme activity in mice. Life Sci.11: 565-572. Google Scholar
Dahlstrom, A., andFuxe, K. (1964). Localization of monoamines in the lower brain stem. Experientia20: 398-399. Google Scholar
Daszuta, A., andPortalier, P. (1985). Distribution and quantification of 5-HT nerve cell bodies in the nucleus raphe dorsalis area of C57BL and BALBc mice. Relationship between anatomy and biochemistry. Brain Res.360: 58-64. Google Scholar
Demant, P., andHart, A. A. (1986). Recombinant congenic strains-A new tool for analyzing genetic traits determined by more than one gene. Immunogenetics24: 416-422. Google Scholar
de Silva, H. R.,Khan, N. L., andWood, N. W. (2000). The genetics of Parkinson' disease. Curr. Opin. Genet. Dev.10: 292-298. Google Scholar
Deutch, A. Y.,Goldstein, M.,Baldino, F., Jr., andRoth, R. H. (1988). Telencephalic projections of the A8 dopamine cell group. Ann. N.Y. Acad. Sci.537: 27-50. Google Scholar
Dikeos, D. G.,Papadimitriou, G. N.,Avramopoulos, D.,Karadima, G.,Daskalopoulou, E. G.,Souery, D.,Mendlewicz, J.,Vassilopoulos, D., andStefanis, C. N. (1999). Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr. Genet.9: 189-195. Google Scholar
Duaux, E.,Krebs, M. O.,Loo, H., andPoirier, M. F. (2000). Genetic vulnerability to drug abuse. Eur. Psychiatry15: 109-114. Google Scholar
Ebstein, R. P.,Macciardi, F.,Heresco-Levi, U.,Serretti, A.,Blaine, D.,Verga, M.,Nebamov, L.,Gur, E.,Belmaker, R. H.,Avnon, M., andLerer, B. (1997). Evidence for an association between the dopamine D3 receptor gene DRD3 and schizophrenia. Hum. Hered.47: 6-16. Google Scholar
Faraone, S. V., andBiederman, J. (1998). Neurobiology of attentiondeficit hyperactivity disorder. Biol. Psychiatry44: 951-958. Google Scholar
Franklin, K. B. J., andPaxinos, G. (1997). The Mouse Brain in Stereotactic Coordinates, Academic Press, New York. Google Scholar
Gasbarri, A.,Packard, M. G.,Sulli, A.,Pacitti, C.,Innocenzi, R., andPerciavalle, V. (1996). The projections of the retrorubral field A8 to the hippocampal formation in the rat. Exp. Brain Res.112: 244-252. Google Scholar
Gasbarri, A.,Sulli, A., andPackard, M. G. (1997). The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry21: 1-22. Google Scholar
German, D. C., andManaye, K. F. (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J. Comp. Neurol.331: 297-309. Google Scholar
German, D. C.,McDermott, K. L.,Sanghera, M. K.,Schlusselberg, D. S.,Smith, W. K.,Woodward, D. J.,Speciale, S. G., andSaper, C. B. (1983). Three-dimensional reconstruction of dopamine neurons in the mouse: Strain differences in regional cell densities and pharmacology. Soc. Neurosci. Abstr.9: 1150. Google Scholar
Giolli, R. A.,Blanks, R. H.,Torigoe, Y., andWilliams, D. D. (1985). Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. J. Comp. Neurol.232: 99-116. Google Scholar
Glick, S. D. (1985). Heritable differences in turning behavior of rats. Life Sci.36: 499-503. Google Scholar
Gonzalez-Hernandez, T., andRodriguez, M. (2000). Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J. Comp. Neurol.421: 107-135. Google Scholar
Halliday, G. M., andTork, I. (1986). Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J. Comp. Neurol.252: 423-445. Google Scholar
Harris, H. W., andNestler, E. J. (1996). Immunohistochemical studies of mesolimbic dopaminergic neurons in Fischer 344 and Lewis rats. Brain Res.706: 1-12. Google Scholar
Hitzemann, B.,Dains, K.,Kanes, S., andHitzemann, R. (1994). Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J. Pharmacol. Exp. Ther.271: 969-976. Google Scholar
Hitzemann, R.,Qian, Y., andHitzemann, B. (1993). Dopamine and acetylcholine cell density in the neuroleptic responsive (NR) and neuroleptic non-responsive (NNR) lines of mice. J. Pharmacol. Exp. Ther.266: 431-438. Google Scholar
Hornykiewicz, O. (1979). Brain dopamine in Parkinson' Disease and other neurological disturbances. In Horn, A. S.,Dorf, J., andWesterink, B. H. C. (eds.), The Neurobiology of Dopamine, Academic Press, London, pp. 633-654. Google Scholar
Kessler, S.,Ciaranello, R. D.,Shire, J. G. M., andBarchas, J. D. (1971). Genetic variation in catecholamine synthesizing enzyme activities. Genetics68: s33. Google Scholar
Kizer, J. S.,Palkovits, M., andBrownstein, M. J. (1976). The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res.108: 363-370. Google Scholar
Koob, G. F. (1999). The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. N.Y. Acad. Sci.877: 445-460. Google Scholar
Kooistra, C. A., andHeilman, K. M. (1988). Motor dominance and lateral asymmetry of the globus pallidus. Neurology38: 388-390. Google Scholar
Marcel, D.,Raison, S.,Bezin, L.,Pujol, J. F., andWeissmann, D. (1998). Plasticity of tyrosine hydroxylase gene expression within BALB/C and C57Black/6 mouse locus coeruleus. Neurosci. Lett.242: 77-80. Google Scholar
Mattiace, L. A.,Baring, M. D.,Manaye, K. F.,Mihailoff, G. A., andGerman, D. C. (1989). Mesostriatal projections in BALB/c and CBA mice: A quantitative retrograde neuronanatomical tracing study. Brain Res. Bull.23: 61-68. Google Scholar
McRitchie, D. A.,Cartwright, H.,Pond, S. M.,van der Schyf, C. J.,Castagnoli, N., Jr.,van der Nest, D. G., andHalliday, G. M. (1998). The midbrain dopaminergic cell groups in the baboon Papio ursinus. Brain Res. Bull.47: 611-623. Google Scholar
Meloni, R.,Laurent, C.,Campion, D.,Ben Hadjali, B.,Thibaut, F.,Dollfus, S.,Petit, M.,Samolyk, D.,Martinez, M.,Poirier, M. F., et al. (1995). A rare allele of a microsatellite located in the tyrosine hydroxylase gene found in schizophrenic patients. C.R. Acad. Sci. Ser. Iii Sci. Vie318: 803-809. Google Scholar
Meltzer, H. Y., andStahl, S. M. (1976). The dopamine hypothesis of schizophrenia: A review. Schizophr. Bull.2: 19-76. Google Scholar
Morino, H.,Kawarai, T.,Izumi, Y.,Kazuta, T.,Oda, M.,Komure, O.,Udaka, F.,Kameyama, M.,Nakamura, S., andKawakami, H. (2000). A single nucleotide polymorphism of dopamine transporter gene is associated with Parkinson' disease. Ann. Neurol.47: 528-531. Google Scholar
Muthane, U.,Ramsay, K. A.,Jiang, H.,Jackson-Lewis, V.,Donaldson, D.,Fernando, S.,Ferreira, M., andPrzedborski, S. (1994). Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1 mice. Exp. Neurol.126: 195-204. Google Scholar
Nigg, J. T.,Swanson, J. M., andHinshaw, S. P. (1997). Covert visual spatial attention in boys with attention deficit hyperactivity disorder: Lateral effects, methylphenidate response and results for parents. Neuropsychologia35: 165-176. Google Scholar
Noble, E. P. (2000). Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. Eur. Psychiatry15: 79-89. Google Scholar
Paxinos, G., andWatson, C. (1998). The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, CA. Google Scholar
Pearson, J.,Halliday, G.,Sakamoto, N., andMichel, J.-P. (1990). Catecholaminergic Neurons, In Paxinos, G. (ed.), The Human Nervous System, CA, pp. 1023-1049. Academic Press, San Diego. Google Scholar
Phillipson, O. T. (1979). The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J. Comp. Neurol.187: 85-98. Google Scholar
Polymeropoulos, M. H.,Lavedan, C.,Leroy, E.,Ide, S. E.,Dehejia, A.,Dutra, A.,Pike, B.,Root, H.,Rubenstein, J.,Boyer, R.,Stenroos, E. S.,Chandrasekharappa, S.,Athanassiadou, A.,Papapetropoulos, T.,Johnson, W. G.,Lazzarini, A. M.,Duvoisin, R. C.,Di Iorio, G.,Golbe, L. I., andNussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson' disease. Science276: 2045-2047. Google Scholar
Reis, D. J.,Baker, H.,Fink, J. S., andJoh, T. H. (1981). A genetic control of the number of dopamine neurons in mouse brain: Its relationship to brain morphology, chemistry, and behavior. In Gerson, E. S.,Matthysse, S.,Breakefield, X. O., andCiaranello, R. D. (eds.), Genetic Research Strategies for Psychobiology and Psychiatry, Boxwood Press, Pacific Grove, CA, pp. 215-229. Google Scholar
Reis, D. J.,Fink, J. S., andBaker, H. (1983). Genetic control of the number of dopamine neurones in the brain: Relationship to behavior and responses to psychoactive drugs. In Kety, S. S.,Rowland, L. P.,Sidman, R. L., and Matthysse, S. W. (eds.), Genetics of Neurological and Psychiatric Disorders, Raven Press, New York, pp. 55-75. Google Scholar
Richter, A.,Ebert, U.,Nobrega, J. N.,Vallbacka, J. J.,Fedrowitz, M., andLoscher, W. (1999). Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior. Neuroscience89: 461-471. Google Scholar
Ross, R. A.,Judd, A. B.,Pickel, V. M.,Joh, T. H., andReis, D. J. (1976). Strain-dependent variations in number of midbrain dopaminergic neurones. Nature264: 654-656. Google Scholar
Serretti, A.,Macciardi, F.,Catalano, M.,Bellodi, L., andSmeraldi, E. (1999). Genetic variants of dopamine receptor D4 and psychopathology. Schizophr. Bull.25: 609-618. Google Scholar
Shimura, H.,Hattori, N.,Kubo, S.,Mizuno, Y.,Asakawa, S.,Minoshima, S.,Shimizu, N.,Iwai, K.,Chiba, T.,Tanaka, K., andSuzuki, T. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet.25: 302-305. Google Scholar
Swanson, J. M. (2000). Dopamine-transporter density in patients with ADHD [letter; comment]. Lancet355: 1461-1462. Google Scholar
Swanson, J. M.,Flodman, P.,Kennedy, J.,Spence, M. A.,Moyzis, R.,Schuck, S.,Murias, M.,Moriarity, J.,Barr, C.,Smith, M., andPosner, M. (2000). Dopamine genes and ADHD. Neurosci. Biobehav. Rev.24: 21-25. Google Scholar
Swanson, L. W. (1982). The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull.9: 321-353. Google Scholar
Taber, E. (1961). The cytoarchitecture of the brainstem of the cat. I. Brainstem nuclei of the cat. J. Comp. Neurol.116: 27-69. Google Scholar
Thibaut, F.,Ribeyre, J. M.,Dourmap, N.,Meloni, R.,Laurent, C.,Campion, D.,Menard, J. F.,Dollfus, S.,Mallet, J., andPetit, M. (1997). Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia. Schizophr. Res.23: 259-264. Google Scholar
Vadasz, C. (1990). Development of congenic recombinant inbred neurological animal model lines. Mouse Genome88: 16-18. Google Scholar
Vadasz, C.,Baker, H.,Joh, T. H.,Lajtha, A., andReis, D. J. (1982). The inheritance and genetic correlation of tyrosine hydroxylase activities in the substantia nigra and corpus striatum in the CXB recombinant inbred mouse strains. Brain Res.234: 1-9. Google Scholar
Vadasz, C.,Baker, H.,Fink, S. J., andReis, D. J. (1985). Genetic effects and sexual dimorphism in tyrosine hydroxylase activity in two mouse strains and their reciprocal F1 hybrids. J. Neurogenet.2: 219-230 Google Scholar
Vadasz, C.,Sziraki, I.,Murthy, L. R., andLajtha, A. (1986). Genetic determination of striatal tyrosine hydroxylase activity in mice. Neurochem. Res.11: 1139-1149. Google Scholar
Vadasz, C.,Sziraki, I.,Murthy, L. R.,Vadasz, I.,Badalamenti, A. F.,Kobor, G., andLajtha, A. (1987). Genetic determination of mesencephalic tyrosine hydroxylase activity in the mouse. J. Neurogenet.4: 241-252. Google Scholar
Vadasz, C.,Laszlovszky, I., andFleischer, A. (1994a). Dopamine system-specific QTL introgressed lines: Response to cocaine. Mouse Genome92: 699-701. Google Scholar
Vadasz, C.,Sziraki, I.,Murthy, L. R.,Sasvari-Szekely, M.,Kabai, P.,Laszlovszky, I.,Fleischer, A.,Juhasz, B., andZahorchak, R. (1994b). Transfer of brain dopamine system-specific quantitative trait loci onto a C57BL/6ByJ background. Mammal. Genome5: 735-737. Google Scholar
Vadasz, C.,Sziraki, I.,Sasvari, M.,Kabai, P.,Laszlovszky, I.,Juhasz, B., andZahorchak, R. (1996). Genomic characterization of two introgression strains (B6.Cb4i5) for the analysis of QTLs. Mammal. Genome7: 545-548. Google Scholar
Vadasz, C.,Sziraki, I.,Sasvari, M.,Kabai, P.,Murthy, L. R.,Saito, M., andLaszlovszky, I. (1998). Analysis of the mesotelencephalic dopamine system by quantitative-trait locus introgression. Neurochem. Res.23: 1337-1354. Google Scholar
Waller, S. B.,Ingram, D. K.,Reynolds, M. A., andLondon, E. D. (1983). Age and strain comparisons of neurotransmitter synthetic enzyme activities in the mouse. J. Neurochem.41: 1421-1428. Google Scholar
West, M. J.,Slomianka, L., andGundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec.231: 482-497. Google Scholar
West, M. J.,Ostergaard, K.,Andreassen, O. A., andFinsen, B. (1996). Estimation of the number of somatostatin neurons in the striatum: An in situ hybridization study using the optical fractionator method. J. Comp. Neurol.370: 11-22. Google Scholar
Williams, R. W.,Strom, R. C., andGoldowitz, D. (1998). Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J. Neurosci.18: 138-146. Google Scholar
Williams, S. M., andGoldman-Rakic, P. S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex8: 321-345. Google Scholar
Wimer, R. E.,Wimer, C. C.,Vaughn, J. E.,Barber, R. P.,Balvanz, B. A., andChernow, C. R. (1978). The genetic organization of neuron number in the granule cell layer of the area dentata in house mice. Brain. Res.157: 105-122. Google Scholar
Yamaguchi, S., andKobayashi, S. (1998). Contributions of the dopaminergic system to voluntary and automatic orienting of visuospatial attention. J. Neurosci.18: 1869-1878. Google Scholar