Molecular analysis of the Doppia transposable element of maize (original) (raw)
References
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402. Google Scholar
Banks, J., Masson, P. and Federoff, N. 1988. Molecular mechanisms in the developmental regulation of the maize Suppressor–mutator tansposable elements. Genes Dev. 2: 1364–1380. Google Scholar
Barkan, A. and Martienssen, R.A. 1991. Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward–reading promoter near the end of Mu1. Proc. Natl. Acad. Sci. USA 88: 3502–3506. Google Scholar
Chopra, S., Brendel, V., Zhang, J., Axtell, J.D. and Peterson, T. 1999. Molecular characterization of a mutable pigmentation phe–notype and isolation of the first active transposable element from Sorghum bicolorr. Proc. Natl. Acad. Sci. USA 96: 15330–15335. Google Scholar
Cone, K.C., Cocciolone, S.M., Moehlenkamp, C.A., Weber, T., Drummond, B.J., Tagliani, L.A., Bowen, B.A. and Perrot, G.H. 1993. Role of the regulatory gene pl in the photocontrol of maize anthocyanin pigmentation. Plant Cell 5: 1807–1816. Google Scholar
Fedoroff, N. 1996. Epigenetic regulation of the maize Spm trans–posable element. In: V.E.A. Russo, R.A. Martienssen and A.D. Riggs (Eds.) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 575–592. Google Scholar
Frey, M., Reinecke, J., Grant, S., Saedler, H. and Gierl, A. 1990. Ex–cision of the En/Spm transposable element of Zea mays requires two element–encoded proteins. Journal??? 9: 4037–4044. Google Scholar
Gierl, A., Lutticke, S. and Saedler, H. 1988. TnpA product encoded by the transposable element En–1 of Zea mays is a DNA binding protein. EMBO J. 7: 4045–4053. Google Scholar
Grant, S.R., Gierl, A. and Saedler, H. 1990. En/Spm encoded tnpA protein requires a specific target sequence for suppression. EMBO. J. 9: 2029–2035. Google Scholar
Grant, S.R., Hardenack, S., Trentmann, S. and Saedler, H. 1993. Functional _ci_s–element sequence requirements for suppression of gene expression by the TNPA protein of the Zea mays transposon _En/Sp_m. Mol. Gen. Genet. 241: 153–160. Google Scholar
Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouze, P. and Brunak, S. 1996. Splice site prediction in Ara–bidopsis thaliana DNA by combining local and global sequence information. Nucl. Acids Res. 24: 3439–3452. Google Scholar
Kermicle, J. 1996. Epigenetic silencing and activation of a maize r gene. In: V.E.A. Russo, R.A. Martienssen and A.D. Riggs (Eds.) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Plainview,NY, pp. 267—287. Google Scholar
Martienssen, R. and Baron, A. 1994. Coordinate suppression of mutations caused by Robertson's Mutator transposons in maize. Genetics 136: 1157–1170. Google Scholar
Masson, P., Surosky, R., Kingsbury, J.A. and Federoff, N. 1987. Ge–netic and molecular analysis of the Spm–dependent a–m2 alleles of the maize a locus. Genetics 177: 117–137. Google Scholar
Masson, P., Rutherford, G., Banks, J.A. and Fedoroff, N.V. 1989. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58: 755–765. Google Scholar
Masson, P., Banks, J.A. and Fedoroff, N. 1991. Structure and function of the maize Spm transposable element. Biochimie 73: 5–8. Google Scholar
Masson, P., Strem, M. and Fedoroff, N. 1991. The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell 3: 73–85. Google Scholar
May, B.P. and Dellaporta, S.L. 1998. Transposon sequences drive tissue–specific expression of the maize regulatory gene R–s.Plant J. 13: 241–247. Google Scholar
McClintock, B. 1958.The Suppressor–mutator system of control of gene action in maize. Carnegie Inst. Wash. Year Book 57: 415–429. Google Scholar
McClintock, B. 1962. Topographical relations between elements of control systems in maize. Carnegie Inst. Wash. Year Book 61: 448–461. Google Scholar
Mukhopadhyay, G., Sozhamannan, S. and Chattoraj, D.K. 1994 Re–laxation of replication control in chaperone–independent initiator mutants of plasmid P1. EMBO J. 13: 2089–2096. Google Scholar
Nacken, W.K.F., Piotrawiak, R., Saedler, H. and Sommer, H. 1991. The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol. Gen. Genet. 228: 201–208. Google Scholar
Nelson, O.E. and Klein, A.S. 1984. Characterization of an Spm–controlled bronze–mutable allele in maize. Genetics 106: 769–779. Google Scholar
Ozeki, Y., Davies, E. and Takeda, J. 1997. Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia–lyase (PAL) gene. Mol. Gen. Genet. 254: 407–416. Google Scholar
Panavas, T., Weir, J. and Walker, E. 1999. The structure and para–mutagenicity of the R–marbled haplotype of Zea mays. Genetics 153: 979–991. Google Scholar
Pereira, A., Cuypers, H., Gierl, A., Schwartz–Sommer, Z. and Saedler, H. 1986. Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J. 5: 835–841. Google Scholar
Raina, R., Cook, D. and Fedoroff, N. 1993. Maize Spm transposable element has an enhancer–insensitive promoter. Proc. Natl. Acad. Sci. USA 90: 6355–6359. Google Scholar
Raina, R., Schlappi, M., Karunanandaa, B., Elhofy, A. and Fedoroff, N. 1998. Concerted formation of macromolecular Suppressor–mutator transposition complexes. Proc. Natl. Acad. Sci. USA 95: 8526–8531. Google Scholar
Rhodes, P.R. and Vodkin, L.O. 1988. Organization of the Tgm family of transposable elements in soybean. Genetics 120: 597–604. Google Scholar
Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview,NY. Google Scholar
Schiefelbein, J.W., Raboy, V., Kim, H.–Y. and Nelson, O.E. 1988. Molecular charcaterization of Suppressor–mutator (Spm)–induced mutatins at the bronze–1 locus in maize: the bz–m13 alleles. In: E.E. Nelson (Ed.) Plant Transposable Elements, Plenum, New York, pp. 261–278. Google Scholar
Schlappi, M., Raina, R. and Fedoroff, N. 1994. Epigenetic regula–tion of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77: 427–437. Google Scholar
Schneider, M., Ow, D.W. and Howell, S.H. 1990. The in vivo pattern of firefly luciferase expression in transgenic plants. Plant Mol. Biol. 14: 935–947. Google Scholar
Schwarz–Sommer, Z., Gierl, A., Cuypers, H., Peterson, P.A. and Saedler, H. 1985. Plant transposable elements generate the sequence diversity needed in evolution. EMBO J. 4: 591–597. Google Scholar
Snowden, K.C. and Napoli, C.A. 1998. Ps1: a novel Spm–like transposable element from Petunia hybrida. Plant J. 14: 43–54. Google Scholar
Trentmann, S.M., Saedler, H. and Gierl, A. 1993. The transposable element _En/Sp_m–encoded TNPA protein contains a DNA binding and a dimerization domain. Mol. Gen. Genet. 238: 201–208. Google Scholar
Walker, E.L. 1998. Paramutation of the r1 locus of maize is as–sociated with increased cytosine methylation. Genetics 148: 1973–1981. Google Scholar
Walker, E.L., Robbins, T.P., Bureau, T.E., Kermicle, J. and Della–porta, S.L. 1995. Transposon mediated chromosomal rearrange–ments and gene duplications in the formation of the maize R–r complex. EMBO J. 14: 2350–2363. Google Scholar
Walker, E.L., Eggleston, W.B., Demopoulos, D., Kermicle, J.L. and Dellaporta, S.L. 1997. Insertions of a novel class of transposable elements with a strong target site preference at the R complex of maize. Genetics 146: 681–693. Google Scholar