Distinguishing Between GABAA Receptors Responsible for Tonic and Phasic Conductances (original) (raw)
REFERENCES
Schmitt, F. O. 1984. Molecular regulators of brain function: A new view. Neuroscience 13:991–1001. Google Scholar
Bach-y-Rita, P. 1993. Nonsynaptic diffusion neurotransmission (NDN) in the brain. Neurochem. Int. 23:297–318. Google Scholar
Agnati, L. F., Zoli, M., Stromberg, I., and Fuxe, K. 1995. Intercellular communication in the brain: Wiring versus volume transmission. Neuroscience 69:711–726. Google Scholar
Zoli, M. and Agnati, L. F. 1996. Wiring and volume transmission in the central nervous system: The concept of closed and open synapses. Prog. Neurobiol. 49:363–380. Google Scholar
Vizi, E. S. 2000. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 52:63–89. Google Scholar
Zoli, M., Jansson, A., Sykova, E., Agnati, L. F., and Fuxe, K. 1999. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20:142–150. Google Scholar
Herkenham, M. 1987. Mismatches between neurotransmitter and receptor localizations in brain: Observations and implications. Neuroscience 23:1–38. Google Scholar
Barbour, B. and Häusser, M. 1997. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 20:377–384. Google Scholar
Otis, T. S., Staley, K. J., and Mody, I. 1991. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 545:142–150. Google Scholar
Brickley, S. G., Cull-Candy, S. G., and Farrant, M. 1996. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.) 497:753–759. Google Scholar
Macdonald, R. L. and Olsen, R. W. 1994. GABAA receptor channels. Annu. Rev. Neurosci. 17:569–602. Google Scholar
Sieghart, W. 1995. Structure and pharmacology of gammaaminobutyric acidA receptor subtypes. Pharmacol. Rev. 47:181–234. Google Scholar
Hevers, W. and Lüddens, H. 1998. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol. 18:35–86. Google Scholar
Tanelian, D. L., Kosek, P., Mody, I., and MacIver, M. B. 1993. The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78:757–776. Google Scholar
Franks, N. P. and Lieb, W. R. 1994. Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614. Google Scholar
Biggio, G., Concas, A., and Costa, E. 1992. GABAergic Synaptic Transmission. Molecular, Pharmacological, and Clinical Aspects., Raven Press, New York, pp. 1–469. Google Scholar
Jones, M. V. and Westbrook, G. L. 1996. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19:96–101. Google Scholar
Galarreta, M. and Hestrin, S. 1997. Properties of GABAA receptors underlying inhibitory synaptic currents in neocortical pyramidal neurons. Journal of Neuroscience 17:7220–7227. Google Scholar
Mozrzymas, J. W., Barberis, A., Michalak, K., and Cherubini, E. 1999. Chlorpromazine inhibits miniature GABAergic currents by reducing the binding and by increasing the unbinding rate of GABAA receptors. J. Neurosci. 19:2474–2488. Google Scholar
Hájos, N., Nusser, Z., Rancz, E. A., Freund, T. F., and Mody, I. 2000. Cell type-and synapse specific variability in GABAA receptor occupancy. Eur. J. Neurosci. 12:810–818. Google Scholar
Nusser, Z., Roberts, J. D., Baude, A., Richards, J. G., and Somogyi, P. 1995. Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neurosci. 15:2948–2960. Google Scholar
Jones, A., Korpi, E. R., McKernan, R. M., Pelz, R., Nusser, Z., Mäkelä, R., Mellor, J. R., Pollard, S., Bahn, S., Stephenson, F. A., Randall, A. D., Sieghart, W., Somogyi, P., Smith, A. J. H., and Wisden, W. 1997. Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits d subunit expression. J. Neurosci. 17:1350–1362. Google Scholar
Lerma, J., Herranz, A. S., Herreras, O., Abraira, V., and Martin, D. R. 1986. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384:145–155. Google Scholar
Tossman, U., Jonsson, G., and Ungerstedt, U. 1986. Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol. Scand. 127:533–545. Google Scholar
Sah, P., Hestrin, S., and Nicoll, R. A. 1989. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246:815–818. Google Scholar
LoTurco, J. J., Mody, I., and Kriegstein, A. R. 1990. Differential activation of glutamate receptors by spontaneously released transmitter in slices of neocortex. Neurosci. Lett. 114:265–271. Google Scholar
Misgeld, U., Bijak, M., and Jarolimek, W. 1995. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog. Neurobiol. 46:423–462. Google Scholar
Wall, M. J. and Usowicz, M. M. 1997. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci. 9:533–548. Google Scholar
Rossi, D. J. and Hamann, M. 1998. Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron 20:783–795. Google Scholar
McKernan, R. M. and Whiting, P. J. 1996. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 19:139–143. Google Scholar
Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M., and Luscher, B. 1998. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat. Neurosci. 1:563–571. Google Scholar
Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., and Olsen, R. W. 1999. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397:69–72. Google Scholar
Korpi, E. R. and Lüddens, H. 1997. Furosemide interactions with brain GABAA receptors. Br. J. Pharmacol. 120:741–748. Google Scholar
Leao, R. M., Mellor, J. R., and Randall, A. D. 2000. Tonic benzodiazepine-sensitive GABAergic inhibition in cultured rodent cerebellar granule cells [In Process Citation]. Neuropharmacol. 39:990–1003. Google Scholar
Brickley, S. G., Cull-Candy, S. G., and Farrant, M. 1999. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19:2960–2973. Google Scholar
Brickley, S. G., Revilla, V., Cull-Candy, S. G., Wisden, W., and Farrant, M. 2001. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92. Google Scholar
Nusser, Z., Sieghart, W., and Somogyi, P. 1998. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18:1693–1703. Google Scholar
Sassoe-Pognetto, M., Panzanelli, P., Sieghart, W., and Fritschy, J. M. 2000. Colocalization of multiple GABA(A) receptor subtypes with gephyrin at postsynaptic sites. J. Comp. Neurol. 420:481–498. Google Scholar
Saxena, N. C. and Macdonald, R. L. 1994. Assembly of GABAA receptor subunits: Role of the δ subunit. J. Neurosci. 14:7077–7086. Google Scholar
Tia, S., Wang, J. F., Kotchabhakdi, N., and Vicini, S. 1996. Distinct deactivation and desensitization kinetics of recombinant GABAA receptors. Neuropharmacol 35:1375–1382. Google Scholar
Fisher, J. L. and Macdonald, R. L. 1997. Single channel properties of recombinant GABAA receptors containing gamma2 or δ subtypes expressed with α1 and β3 subtypes in mouse L929 cells. J. Physiol. (Lond.) 505:283–297. Google Scholar
Haas, K. F. and Macdonald, R. L. 1999. GABAA receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J. Physiol. (Lond.) 514(Pt 1):27–45. Google Scholar
Sur, C., Farrar, S. J., Kerby, J., Whiting, P. J., Atack, J. R., and McKernan, R. M. 1999. Preferential coassembly of alpha4 and delta subunits of the gamma-aminobutyric acidA receptor in rat thalamus. Mol. Pharmacol. 56:110–115. Google Scholar
Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Kohler, M., Schofield, P. R., and Seeburg, P. H. 1989. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337. Google Scholar
Zhu, W. J., Wang, J. F., Krueger, K. E., and Vicini, S. 1996. δ subunit inhibits neurosteroid modulation of GABAA receptors. J. Neurosci. 16:6648–6656. Google Scholar
Mihalek, R. M., Banerjee, P. K., Korpi, E. R., Quinlan, J. J., Firestone, L. L., Mi, Z. P., Lagenaur, C., Tretter, V., Sieghart, W., Anagnostaras, S. G., Sage, J. R., Fanselow, M. S., Guidotti, A., Spigelman, I., Li, Z., DeLorey, T. M., Olsen, R. W., and Homanics, G. E. 1999. Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta su unit knockout mice. Proc. Natl. Acad. Sci. USA 96:12905–12910. Google Scholar
Benke, D., Michel, C., and Möhler, H. 1997. GABAA receptors containing the α4-subunit. Prevalence, distribution, pharmacology, and subunit architecture in situ. J. Neurochem. 69: 806–814. Google Scholar
Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y., and Coulter, D. A. 1998. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 4:1166–1172. Google Scholar
Bencsits, E., Ebert, V., Tretter, V., and Sieghart, W. 1999. A significant part of native gamma-aminobutyric AcidA receptors containing alpha4 subunits do not contain gamma or delta subunits. J. Biol. Chem. 274:19613–19616. Google Scholar
Clark, M. 1998. Sensitivity of the rat hippocampal GABA(A) receptor alpha 4 subunit to electroshock seizures. Neurosci. Lett. 250:17–20. Google Scholar
Sperk, G., Schwarzer, C., Tsunashima, K., and Kandlhofer, S. 1998. Expression of GABA(A) receptor subunits in the hippocampus of the rat after kainic acid-induced seizures. Epilepsy Res. 32:129–139. Google Scholar
Smith, S. S., Gong, Q. H., Hsu, F. C., Markowitz, R. S., Ffrench-Mullen, J. M., and Li, X. 1998. GABAA receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 392:926–930. Google Scholar
Smith, S. S., Gong, Q. H., Li, X., Moran, M. H., Bitran, D., Frye, C. A., and Hsu, F. C. 1998. Withdrawal from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J. Neurosci. 18:5275–5284. Google Scholar
Matthews, D. B., Kralic, J. E., Devaud, L. L., Fritschy, J. M., and Marrow, A. L. 2000. Chronic blockade of N-methyl-Daspartate receptors alters gamma-aminobutyric acid type A receptor peptide expression and function in the rat. J. Neurochem. 74:1522–1528. Google Scholar
Fritschy, J. M., Johnson, D. K., Mohler, H., and Rudolph, U. 1998. Independent assembly and subcellular targeting GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett. 249:99–102. Google Scholar
Burgard, E. C., Haas, K. F., and Macdonald, R. L. 1999. Channel properties determine the transient activation kinetics of recombinant GABA(A) receptors. Brain Res. Mol. Brain Res. 73:28–36. Google Scholar
Houser, C. R. and Esclapez, M. 1996. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res. 26:207–218. Google Scholar
Overstreet, L. S., Jones, M. V., and Westbrook, G. L. 2000. Slow desensitization regulates the availability of synaptic GABA(A) receptors. J. Neurosci. 20:7914–7921. Google Scholar
Birnir, B., Everitt, A. B., Lim, M. S., and Gage, P. W. 2000. Spontaneously opening GABA(A) channels in CA1 pyramidal neurones of rat hippocampus. J. Membr. Biol. 174:21–29. Google Scholar
Bai, D., Zhu, G., Pennefather, P., Jackson, M. F., MacDonald, J. F., and Orser, B. A. 2001. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol. Pharmacol. 59:814–824. Google Scholar
Pritchett, D. B. and Seeburg, P. H. 1990. Gamma-aminobutyric acidA receptor alpha 5-subunit creates novel type II benzodiazepine receptor pharmacology. J. Neurochem. 54:1802–1804 Google Scholar