The Role of Mammary Stroma in Modulating the Proliferative Response to Ovarian Hormones in the Normal Mammary Gland (original) (raw)
- C. Birchmeier and W. Birchmeier (1993). Molecular aspects of mesenchymal-epithelial interactions. Ann. Rev. Cell Biol. 9: 511-540.
Google Scholar - K. Kratochwil (1969). Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Devel. Biol. 20: 46-71.
Google Scholar - G. R. Cunha and Y. K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1: 21-35.
Google Scholar - S. Z. Haslam (1986). Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 46: 310-316.
Google Scholar - S. Z. Haslam and L. J. Counterman (1991). Mammary stroma modulates hormonal responsiveness of mammary epithelium in vivo in the mouse. Endocrinology 129: 2017-2023.
Google Scholar - C.M. McGrath (1983). Augmentation of the response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res. 43: 1355-1360.
Google Scholar - J. L. Fendrick, A. M. Raafat, and S. Z. Haslam (1998). Mammary gland growth and development from the postnatal period to postmenopause: ovarian steroid receptor ontogeny and regulation in the mouse. J. Mam. Gland Biol. Neoplasia 4 (in press).
- S. Z. Haslam (1989). The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology 125: 2766-2772.
Google Scholar - K. S. McCarty, Jr., E. Szabo, J. L. Flowers, E. B. Cox, G. S. Leight, L. Miller, J. Konrath, J. T. Soper, D. A. Budwit, W. T. Creasman, H. F. Seigler, and K. S. McCarty, Sr. (1986). Use of amonoclonal anti-estrogen receptor antibody in the immuno-histochemical evaluation of human tumors. Cancer Res. (Suppl.) 46: 4244s-4248s.
Google Scholar - C. Malet, A. Gompel, H. Yaneva, H. Cren, N. Fidji, I. Mowszowicz, F. Kuttenn, and P. Mauvais-Jarvis (1991). Estradiol and progesterone receptors in cultured normal human breast epithelial cells and fibroblasts: Immunocytochemical studies. J. Clin. Endocrinol. Metabol. 73: 8-17.
Google Scholar - S. Z. Haslam and G. Shyamala (1981). Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 108: 825-830.
Google Scholar - C.W. Daniel, G. B. Silberstein, and P. Strickland (1987). Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res. 47: 6052-6057.
Google Scholar - S. Z. Haslam (1988). Local versus systemically mediated effects of estrogen on normal mammary epithelial cell deoxyribonucleic acid synthesis. Endocrinology 122: 860-867.
Google Scholar - W. Imagawa, J. Yang, R. Guzman, and S. Nandi (1994). Control of mammary gland development. In E. Knobil and J. D. Neill (eds.), The Physiology of Reproduction Second Edition, Raven Press, Ltd., New York, pp. 1033-1063.
Google Scholar - J. Xie and S. Z. Haslam (1997). Extracellular matrix regulates ovarian hormone-dependent proliferation of mouse mammary epithelial cells. Endocrinology 138: 2466-2473.
Google Scholar - W. P. Bocchinfuso and K. S. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2: 323-334.
Google Scholar - G. R. Cunha, P. Young, Y. K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombination experiments. J. Mam. Gland Biol. Neoplasia 2: 393-402.
Google Scholar - K. Hoshino. (1978). Mammary transplantation and its histogenesis in mice. In A. Yokoyama, M. Mizuno and H. Nagasawa (eds.), Physiology of Mammary Glands University Park Press, University Park, Maryland, pp. 163-228.
Google Scholar - C. W. Daniel, J. J. Berger, P. Strickland, and R. Garcia. (1984). Similar growth pattern of mouse mammary cells cultivated in collagen matrix in vivo and in vitro. Devel. Biol. 104: 57-64.
Google Scholar - B. E. Elliot, S. P. Tam, D. Dexter, and Z. Q. Chen (1992). Capacity of adipose tissue to promote growth and metastasis of amurine mammary carcinoma: effect of estrogen and progesterone. Int. J. Cancer 51: 416-424.
Google Scholar - G. Shyamala and A. Ferenczy (1984). Mammary fat pad may be a potential site for initiation of estrogen action in normal mouse mammary glands. Endocrinology 115: 1078-1081.
Google Scholar - T. L. Woodward, W. E. Beale, and R. M. Akers (1993). Cell interactions in initiation of mammary epithelial proliferation by oestradiol and progesterone in prepubertal heifers. J. Endocrinol. 136: 149-157.
Google Scholar - J. J. Berger and C. W. Daniel (1983). Stromal DNA synthesis is stimulated in young, but not serially aged, mouse mammary epithelium. Mech. Aging Devel. 2: 259-264.
Google Scholar - S. Z. Haslam (1988). Cell to cell interactions and normal mammary gland function. J. Dairy Sci. 71: 2843-2854.
Google Scholar - S. Z. Haslam, L. J. Counterman, and A. R. St. John (1993). Hormonal basis for acquisition of estrogen-dependent progesterone receptors in the normal mouse mammary gland. Steroid Biochem. 12: 27-34.
Google Scholar - J. Barlow, T. Casey, J-F Chiu, and K. Plaut (1997). Estrogen affects development of alveolar structures in whole-organ culture of mouse mammary glands. Biochem. Biophys. Res. Commun. 232: 340-344.
Google Scholar - S. M. Snedeker, C. F. Brown, and R. P. DiAugustine (1991). Expression and functional properties of transforming growth factor-α and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 88: 276-280.
Google Scholar - D. P. Ankrapp, J. M. Bennett, and S. Z. Haslam (1998). The role of epidermal growth factor in the acquisition of ovarian steroid hormone responsiveness in the normal mouse mammary gland. J. Cell Physiol. 174: 251-260.
Google Scholar - S. Coleman, G. B. Silberstein, and C. W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Devel. Biol. 127: 304-315.
Google Scholar - B. K. Vonderhaar (1987). Local effects of EGF, α-TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary gland in vivo. J. Cell. Physiol. 132: 581-584.
Google Scholar - S. Z. Haslam, L. J. Counterman, and K. A. Nummy (1993). Effects of epidermal growth factor, estrogen and progestin on DNA synthesis in mammary cells in vivo are determined by the developmental state of the gland. J. Cell. Physiol. 155: 72-78.
Google Scholar - S. Z. Haslam, L. J. Counterman, and K. A. Nummy (1992). EGF receptor regulation in normal mouse mammary gland. J. Cell. Physiol. 152: 553-557.
Google Scholar - J. I. Jones and D. R. Clemmons (1995). Insulin-like growth factors and their binding proteins: Biological actions. Endoticrine Rev. 16: 3-34.
Google Scholar - D. Yee, S. Paik, G. S. Lebovic, R. R. Marcus, R. E. Favoni, K. J. Cullen, M. E. Lippman, and N. Rosen (1989). Analysis of insulin-like growth factor I gene expression in malignancy: evidence for a paracrine role in human breast cancer. Mol. Endocrinol. 3: 509-517.
Google Scholar - S. D. Hauser, M. F. McGrath, R. J. Collier, and G. G. Krivi (1990). Cloning and in vivo expression of bovine growth hormone receptor mRNA. Mol. Cell Endocrinol. 72: 187-200.
Google Scholar - W. Ruan, V. Catanese, R. Wieczorek, M. Feldman, and D. L. Kleinberg (1995). Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136: 1296-1302.
Google Scholar - K. Swisshelm, K. Ryan, K. Tsuchiya, and R. Sager (1995). Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proc. Natl. Acad. Sci. U. S. A. 92: 4472-4476.
Google Scholar - H. Huynh, X. F. Yang, and M. Pollak (1996). A role for insulin-like growth factor binding protein 5 in the antiproliferative action of the antiestrogen ICI 182780. Cell Growth Differ. 7: 1501-1506.
Google Scholar - H. Huynh, X. Yang, and M. Pollak (1996). Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells. J. Biol. Chem. 271: 1016-1021.
Google Scholar - R. B. Clarke, A. Howell, and E. Anderson (1997). Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen or progesterone. Brit. J. Cancer 75: 251-257.
Google Scholar - M. S. Pepper, J. V. Soriano, P. A. Menoud, A. P. Sappino, L. Orci, and R. Montesano (1995). Modulation of hepatocyte growth factor and c-Met in the rat mammary gland during pregnancy lactation and involution. Exp. Cell Res. 219: 204-210.
Google Scholar - B. Niranjan, L. Buluwela, J. Yant, N. Perusinghe, A. Atherton, D. Phippard, T. Dale, B. Gusterson, and T. Kamalati (1995). HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121: 2897-2908.
Google Scholar - Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Neimann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131: 215-226.
Google Scholar - J. V. Soriano, M. S. Pepper, L. Orci, and R. Montessano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-β1 in mammary ductal morphogenesis. J. Mam. Gland Biol. Neoplasia 3: 133-150.
Google Scholar - N. Rahimi, R. Saulnier, T. Nakamura, M. Park, and B. Elliott (1994). Role of hepatocyte growth factor in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol. 13: 1189-1197.
Google Scholar - Y. Liu, L. Lin, and R. Zarnegar (1994). Modulation of hepatocyte growth factor gene expression by estrogen in the mouse ovary. Mol. Cell. Endocrinol. 104: 173-181.
Google Scholar - Y. Liu, G. K. Michalopoulos, and R. Zarnegar (1994). Structural and functional characterization of the mouse hepatocyte growth factor gene promoter. J. Biol. Chem. 269: 4152-4160.
Google Scholar - J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano (1995). Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108: 413-430.
Google Scholar - D. Givol and A. Yayon (1992). Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 6: 3362-3369.
Google Scholar - S. Coleman-Krnacik and J. M. Rosen (1994). Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol. Endocrinol. 8: 218-229.
Google Scholar - G. D. Shipley, W. W. Keeble, J. E. Hendrickson, R. J. Coffey, Jr., and M. R. Pittelkow (1989). Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J. Cell Physiol. 138: 511-518.
Google Scholar - L. Ronnov-Jessen and O. W. Petersen (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab. Invest. 68: 696-707.
Google Scholar - A. Johns, A. D. Freay, W. Fraser, K. S. Korach, and G. M. Rubanyi (1996). Disruption of estrogen receptor gene prevents 17 beta estradiol-induced angiogenesis in transgenic mice. Endocrinology 137: 4511-4513.
Google Scholar - J. Fujimoto, M. Hori, S. Ichigo, and T. Tamaya (1996). Expression of basic fibroblast growth factor and its mRNA in uterine endometrium during the menstrual cycle. Gynecol. Endocrinol. 10: 193-197.
Google Scholar - J. Fujimoto, M. Hori, S. Ichigo, and T. Tamaya (1997). Ovarian steroids regulate the expression of basic fibroblast growth factor and its mRNA in fibroblasts derived from uterine endometrium. Ann. Clin. Biochem. 34: 91-96.
Google Scholar - M.M. Zutter, H. Sun, and S. A. Santoro (1998). Altered integrin expression and the malignant phenotype: the contribution of multiple integrated integrin-receptors. J. Mam. Gland Biol. Neoplasia 3: 191-200.
Google Scholar - C. H. Streuli and G. Edwards (1998). Control of normal mammary epithelial phenotype by integrins. J. Mam. Gland Biol. Neoplasia 3: 151-164.
Google Scholar - C. H. Streuli, C. Schmidhauser, N. Bailey, P. Yurchenco, A. P. N. Skubitz, C. Roskelley, and M. J. Bissell (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 129: 591-603.
Google Scholar - A. R. Howlett and M. J. Bissell (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epith. Cell Biol. 2: 79-89.
Google Scholar - P. J. Keely, J. E. Wu, and S. A. Santoro (1995). The spatial and temporal expression of the α2 β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggests important roles in mouse mammary morphogenesis. Differentiation 59: 1-13.
Google Scholar - M. S. Wicha (1984). Interaction of rat mammary epithelium with extracellular matrix components. Prog. Clin. Biol. Res. 145: 129-142.
Google Scholar - G. Parry, B. Cullen, C. S. Kaetzel, R. Kramer, and L. Moss (1987). Regulation of differentiation and polarized secretion in mammary epithelial cells maintained in culture: extracellular matrix and membrane polarity influences. J. Cell Biol. 105: 2043-2051.
Google Scholar - C. H. Streuli and M. J. Bissell (1990). Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110: 1405-1415.
Google Scholar - P. Simon-Assmann, F. Bouziges, C. Arnold, K. Haffen, and M. Kedinger (1988). Epithelial-mesenchymal interactions in the production of basement membrane components in the gut. Development 102: 339-347.
Google Scholar - F. Berdichevsky, D. Alford, B. D'Souza, and J. Taylor-Papadimitriou (1994). Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107: 3557-3568.
Google Scholar - M. L. Li, J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 84: 136-140.
Google Scholar - S. Stahl, S. Weitzman, and J. C. R. Jones (1997). The role of laminin-5 and its receptor in mammary epithelial cell branching morphogenesis. J. Cell. Sci. 110: 55-63.
Google Scholar - B. Elliot, A. Ostman, B. Westermark, and K. Rubin (1992). Modulation of growth factor responsiveness of murine mammary carcinoma cells by cell matrix interactions: correlation of cell proliferation and spreading. J. Cell. Physiol. 152: 292-301.
Google Scholar - R.O. Hynes (1994). Genetic analyses of cell-matrix interactions in development. Curr. Opin. Genet. Devel. 4: 569-574.
Google Scholar - K. K. Wary, F. Mainiero, S. J. Isakoff, E. E. Marcantonio, and F. G. Giancotti (1996). The adapter protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87: 733-743.
Google Scholar