Dynamics of Docosahexaenoic Acid Metabolism in the Central Nervous System: Lack of Effect of Chronic Lithium Treatment (original) (raw)
REFERENCES
Robinson, P.J., Noronha, J.G., DeGeorge, J.J., Freed, L.M., Nariai, T., and Rapoport, S.I. 1992. A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res. Rev. 17:187–214. Google Scholar
Nariai, T., DeGeorge, J.J., Lamour, Y., and Rapoport, S.I. 1991. In vivo brain incorporation of [1-14C]arachidonate in awake rats, with or without cholinergic stimulation, following unilateral lesioning of nucleus basalis magnocellularis. Brain Res. 559:1–9. Google Scholar
Wakabayashi, S., Freed, L.M., Bell, J.M., and Rapoport, S.I. 1994. In vivo cerebral incorporation of radiolabeled fatty acids after acute unilateral orbital enucleation in adult hooded Long-Evans rats. J. Cereb. Blood Flow Metab. 14:312–323. Google Scholar
Arai, T., Wakabayashi, S., Channing, M.A., Dunn, B.B., Der, M.G., Bell, J.M., Herscovitch, P., Eckelman, W.C., Rapoport, S.I., and Chang, M.C.J. 1995. Incorporation of [1-carbon-11]palmitate in monkey brain using PET. J. Nuc. Med. 36:2261–2267. Google Scholar
Chang, M.C.J., Arai, T., Freed, L., Wakabayashi, S., Channing, M.A., Dunn, B.B., Der, M.G., Bell, J.M., Sasaki, T., Herscovitch, P., Eckelman, W.C., and Rapoport, S.I. 1997. Brain incorporation of [1-11c]arachidonate in normocapnic and hypercapnic monkeys, measured by positron emission tomography. Brain Res. 755:74–83. Google Scholar
Rapoport, S.I., Purdon, A., Shetty, H.U., Grange, E., Smith, Q., Jones, C., and Chang, M.C.J. 1997. In vivo imaging of fatty acid incorporation into brain to examine signal transduction and neuroplasticity involving phospholipids. Ann. N.Y. Acad. Sci. 820:56–74. Google Scholar
Washizaki, K., Smith, Q.R., Rapoport, S.I., and Purdon, A.D. 1994. Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J. Neurochem. 63:727–736. Google Scholar
Grange, E., Deutsch, J., Smith, Q.R, Chang, M.C., Rapoport, S.I., and Purdon, A.D. 1995. Brain palmitic acid incorporation in the awake rat: Relation between specific activity of [9,10-3H]palmitate in plasma and brain palmitoyl-CoA pool. J. Neurochem. 65:2290–2298. Google Scholar
Chang, M.C.J., Grange, E., Rabin, O., Bell, J.M., Allen, D.D., and Rapoport, S.I. 1996. Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci. Lett. 220:171–174. Corrigendum 222 (1997) 141. Google Scholar
Purdon, A.D., Arai, T., and Rapoport, S.I. 1997. No direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rats. J. Lipid Res. 38:158–162. Google Scholar
Neuringer, M., Andersen, G.J., and Connor, W.E. 1988. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Ann. Rev. Nutr. 8:517–541. Google Scholar
Salem, N. Jr., Kim, H.Y., and Yergey, J.A. 1986. Docosahexaenoic acid: Membrane function and metabolism, in The Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos A.P., Kifer R.R., and Martin, R., eds.), pp. 263–317. Academic Press, New York. Google Scholar
Gazzah, N., Gharib, A., Croset, M., Bobillier, P., Lagarde, N. 1995. Decrease in brain phospholipid synthesis in free-moving n-3 fatty acid deficient rats. J. Neurochem. 64:908–918. Google Scholar
Rapoport, S.I. 1995. Matters Arising. Docosahexaenoate turnover in brain phospholipids. J. Neurochem. 65:1903–1904. Google Scholar
Folch, J., Lees, M., and Sloane-Stanley, G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509. Google Scholar
Deutsch, J., Grange, E., Rapoport, S.I., and Purdon, A.D. 1994. Isolation and quantification of acyl-CoA esters in brain tissue by solid phase extraction. Anal. Biochem. 220:321–323. Google Scholar
Rabin, O., Deutsch, J., Grange, E., Chang, M.C.J., Rapoport, S.I., and Purdon, A.D. 1997. Changes in cerebral acyl-CoA concentrations following ischemia-reperfusion in awake gerbils. J. Neurochem. 68:2111–2118. Google Scholar
Corkey, B.E. 1988. Analysis of acyl-Coenzyme A esters in biological samples. Methods Enzymol. 166:55–70. Google Scholar
DeGeorge, J.J., Nariai, T., Yamaxzaki, S., Williams, W.M., and Rapoport, S.I. 1991. Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J. Neurochem. 56:352–355. Google Scholar
Stinson, A.M., Wiegand, R.D., and Anderson, R.E. 1991. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 32:2009–2017. Google Scholar
Grange, E., Rabin, O., Bell, J., Rapoport, S.I., and Chang, M.C.J. 1998. Effect of a phospholipase A2 inhibitor on arachidonate incorporation into brain lipids in vivo. Neurochem. Res. (in press).
Chang, M.C.J., and Jones, C.R. 1998. Chronic lithium treatment decreases brain phospholipase A2 activity. Neurochem. Res. 23:887–892. Google Scholar
Dawson, E., Parfitt, E., Roberts, Q., Daniels, J., Lim, L., Sham, P., Nöthen, M., Propping, P., Lanczik, M., Maier, W., Reuner, U., Weissenbach, J., Gill, M., Powell, J., McGuffin, P., Owen, M., and Craddock, N. 1995. Linkage studies of bipolar disorder in the region of the Darier's disease gene on chromosome 12q23-24.1. Am. J. Med. (Neuropsychiat. Gen.) 60:94–102. Google Scholar
Leslie, C.C. 1997. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272:16709–16712. Google Scholar
Clarke, J.D., Schievella, A.R., Nalefski, E.A., and Lin, A.A. 1995. Cytosolic phospholipase A2. J. Lipid Med. Cell Signalling 12:83–117. Google Scholar
Burch, R.M., and Axelrod, J. 1987. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc. Natl. Acad. Sci., U.S.A. 84:6374–6378. Google Scholar
Jelsema, C.L., and Axelrod, J. 1987. Stimulation of phospholipase A2 activity in bovine rod outer segments by the beta gamma subunits of transducin and its inhibition by the alpha subunit. Proc. Natl. Acad. Sci., U.S.A. 84:3623–3627. Google Scholar
Axelrod, J. 1990. Receptor-mediated activation of phospholipase A2 and arachidonic release in signal transduction. Biochem. Soc. Trans. 18:503–507. Google Scholar
Avissar, S., Schreiber, G., Danon, A., and Belmaker, R.H. 1988. Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331:440–442. Google Scholar
Bunney, W.E., and Davis, J.M. 1965. Norepinephrine in depressive reactions. Arch. Gen. Psychiatry 13:483–494. Google Scholar
Nakamura, S. 1990. Antidepressants induce regeneration of catecholaminergic axon terminals in the rat cerebral cortex. Neurosci. Lett. 111:64–68. Google Scholar
Nakamura, S. 1991. Effects of mianserin and fluoxetine on axonal regeneration of brain catecholamine neurons. NeuroReport 2:525–528. Google Scholar
Nakamura, S. 1993. Involvement of phospholipase A2 in axonal regeneration of brain noradrenergic neurones. NeuroReport 4:371–374. Google Scholar
Nakamura, S. 1994. Effect of phospholipase A2 inhibitors on the antidepressant-induced axonal regeneration of noradrenergic locus coeruleus neurons. Microscopy Res. Technique 29:204–210. Google Scholar
Torda, S.W., Yamaguchi, I., Hiarata, F., Kopin, I.J., and Axelrod, J. 1981. Quinacrine-blocked desensitization of adrenoceptors after immobilization stress or repeated injection of isoproterenol in rats. J. Pharmacol. Exp. Ther. 216:334–338. Google Scholar
Manji, H., Chen, G., Bitran, J., Gusovsky, F., and Potter, W.Z. 1990. Mepracrine blocks desipramine induced beta adrenoceptor downregulation in C6 glioma cells. Soc. Neurosci. Abst. 16:914. Google Scholar
Naponen, M., Sanfilipo, M., Samanich, K., Ryer, H., Ko, G., Angrist, B., Wolkin, A., Duncan, E., and Rotrosen, J. 1993. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol. Psychiatry 34:641–649. Google Scholar
Gattaz, W.F., Schmitt, A., and Maras, A. 1995. Increased platelet phospholipase A2 activity in schizophrenia. Schizophr. Res. 16:1–6. Google Scholar
Gattaz, W.F., and Brunner, J. 1996. Phospholipase A2 and the hypofrontality hypothesis of schizophrenia. Prostaglandins, Leuko. and Essent. Fatty Acids 55:109–113. Google Scholar
Horrobin, D.F., Glen, A.I., and Hudson, C.J. 1995. Possible relevance of phospholipid abnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Med. Hypothesis 45:605–613. Google Scholar
Horrobin, D.F. 1996. Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins, Leuko. and Essent. Fatty Acids 55:3–7. Google Scholar
Hudson, C.J., Kennedy, J.L., Gotowiec, A., Lin, A., King, N., Gojtan, K., Macciardi, F., Skorecki, K., Meltzer, H.Y., Warsh, J.J., and Horrobin, D.F. 1996. Genetic variant near cytosolic phospholipase A2 associated with schizophrenia. Schizophr. Res. 21:111–116. Google Scholar
Gattaz, W.F., Kollisch, M., Thuren, T., Virtanen, J.A., and Kinnunen P.K.J. 1987. Increased plasma phospholipase A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol. Psychiatry 22:421–426. Google Scholar
Gattaz, W.F., Hubne, C.K., Nevalainen, T., Thuren, T., and Kinnunen, P.K.J. 1990. Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol. Psychiatry 28:495–501. Google Scholar
Yao, J.K., Van Kammen, D.P., and Welker, J.A. 1994. Red blood cell membrane dynamics in schizophrenia. Schizophr. Res. 13:217–226. Google Scholar
Trzeciak, H.I., Kalacinski, W., Malecki, A., and Kokot, D. 1995. Effect of neuroleptics on phospholipase A2 activity in the brain of rats. Eur. Arch. Psychiatry Clin. Neurosci. 245:179–182. Google Scholar