The Effects of Stress on Central Dopaminergic Neurons: Possible Clinical Implications (original) (raw)

REFERENCES

  1. Natelson, B. H. 1983. Stress, predisposition and the onset of serious disease: implications about psychosomatic etiology. Neurosci. Biobehav. Rev. 7:511–527.
    Google Scholar
  2. Anisman, H. and Zacharko, R. M. 1990. Multiple neurochemical and behavioral consequences of stressors: implications for depression. Pharm. Therapeutics. 46:119–136.
    Google Scholar
  3. Caldecott-Hazard, S., Morgan, D. G., DeLeon-Jones, F., Overstreet, D. H., and Janowsky, D. 1991. Clinical and biochemical aspects of depressive disorders: II. Transmitter/receptor theories. Synapse 9:251–301.
    Google Scholar
  4. Nutt, D. J. and Glue, P. 1989. Clinical pharmacology of anxiolytics and antidepressants: a psychopharmacological perspective. Pharmacol Theories 44:309–334.
    Google Scholar
  5. Bornstein, R. A., Stefl, M. E., and Hammond, L. 1990. A survey of Tourette syndrome patients and their families: the 1987 Ohio Tourette Survey. J. Neuropsych. & Clin. Neurosci. 2:275–281.
    Google Scholar
  6. Schwab, R. S. and Zieper, I. 1965. Effects of mood, motivation, stress, and alertness on the performance in Parkinson's disease. Psychiat. Neurol. (Basel) 150:345–357.
    Google Scholar
  7. Blum, K., Sheridan, P. J., Wood, R. C., Braverman, E. R., Chen, T. J., and Comings, D. E. 1995. Dopamine D2 receptor gene variants: association and linkage studies in impulsive-addictive-compulsive behavior. Pharmacogen. 5:121–141.
    Google Scholar
  8. Deutch, A. Y. 1993. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson's disease. J. Neural Transm. 91: 197–221.
    Google Scholar
  9. Fibiger, H. C. 1995. Neurobiology of depression: focus on dopamine. Adv. Biochem. Psychopharm. 49:1–17.
    Google Scholar
  10. Zigmond, M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A., and Stricker, E. M. Compensations after lesions of central dopaminergic neurons: Some clinical and basic implications. Trends in Neurosci. 13:290–296, 1990.
    Google Scholar
  11. Thierry, A. M., Tassin, J. P., Blanc, G., and Glowinski, J. 1976. Selective activation of mesocortical DA system by stress. Nature. 263:242–4.
    Google Scholar
  12. Deutch, A. Y., Tam, S. Y., et al. 1985. Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res. 333: 143–146.
    Google Scholar
  13. Dunn, A. J. and File, S. E. 1983. Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens, and neostriatum. Physiological Behav. 31:511–513.
    Google Scholar
  14. Fadda, F., Argiolas, A., Melis, M. R., Tissari, A. H., Onali, P. L., and Gessa, G. L. 1978. Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: reversal by diazepam. Life Sci. 23:2219–2224.
    Google Scholar
  15. Herman, J. P., Guillonneau, D., et al. 1982. Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30:2207–2214.
    Google Scholar
  16. Abercrombie, E. D., Keefe, K. A., DiFrischa, D. S., and Zigmond, M. J. 1989. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52:1655–1658.
    Google Scholar
  17. Gresch, P. J., Sved, A. F., Zigmond, M. J., and Finlay, J. M. 1995. Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J. Neurochem. 65:111–116.
    Google Scholar
  18. Deutch, A. Y. et al., 1991. Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex. Cerebral Cortex 1:273–92.
    Google Scholar
  19. Wolf, M. E. and Roth, R. H. 1987. Dopamine Autoreceptors. Pages 45–96, in Creese, I., and Fraser, C. M. (eds.). Dopamine Receptors. Alan R. Liss, New York.
    Google Scholar
  20. White, F. J. and Wang, R. Y. 1983. Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sci. 32:983–993.
    Google Scholar
  21. Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., and Bunney, B. S. (1984) Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neurosci. 12:1–16.
    Google Scholar
  22. Bannon, M. J., Bunney, E. B., and Roth, R. H. 1981. Mesocortical dopamine neurons: rapid transmitter turnover compared to other brain catecholamine systems. Brain Res. 218:376–382.
    Google Scholar
  23. Bannon, M. J. and Roth, R. H. 1983. Pharmacology of mesocortical dopamine neurons. Pharm. Rev. 35:53–68.
    Google Scholar
  24. Cedarbaum, J. M. and Aghajanian, G. K. 1978. Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci. 23:1383–1392.
    Google Scholar
  25. Abercrombie, E. D. and Jacobs, B. L. 1987. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stimuli. J. Neurosci. 7:2844–2848.
    Google Scholar
  26. Grant, S. J., Aston-Jones, G., and Redmond, D. E. 1988. Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res. Bull. 21:401–410.
    Google Scholar
  27. Aston-Jones, G., Chiang, C., and Alexinsky, T. 1991. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress Brain Research 88: 501–520.
    Google Scholar
  28. Thierry, A. M., Javoy, F., Glowinski, J., and Kety, S. S. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J. Pharmacol. Exp. Therap. 163:162–171.
    Google Scholar
  29. Korf, J., Aghajanian, G. K., and Roth, R. H. 1973. Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacol 12:933–938.
    Google Scholar
  30. Mermet, C. C. and Ganon, F. G. 1988. Ether stress stimulates noradrenaline release in the hypothalamic paraventricular nucleus. Neuroendocrinol 47:75–82.
    Google Scholar
  31. Yakoo, H., Tanaka, M., Yoshida, M., Tsuda, A., Tanaka, T., and Mizoguchi, K. 1990. Direct evidence of conditioned fear-elicited enhancement of noradrenaline release in the rat hypothalamus assessed by intracranial microdialysis. Brain Res. 536:305–308.
    Google Scholar
  32. Nakata, T., Kogosov, E., and Alexander, N. 1991. Effect of environmental stress on release of norepinephrine in posterior hypothalamus in awake rats: role of sinoaortic nerves. Life Sci. 48:2021–6.
    Google Scholar
  33. Nisenbaum, L. K., Zigmond, M. J., Sved, A. F., and Abercrombie, E. D. 1991. Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J. Neurosci. 11:1478–1484.
    Google Scholar
  34. Grenhoff, J., Nisell, M., Ferre, S., Aston-Jones, G., and Svensson, T. H. 1993. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J. Neural Transm. 93:11–25.
    Google Scholar
  35. Audet, M. A., Doucet, G., Oleskevich, S., and Descarries, L. 1988. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J. Comp. Neurol. 274:307–318.
    Google Scholar
  36. Descarries, L., Lemay, B., Doucet, G., and Berger, B. 1987. Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neurosci. 21:807–821.
    Google Scholar
  37. Séguéla, P., Watkins, K. C., Geffard, M., and Descarries, L. 1990. Noradrenaline axon terminals in adult rat neocortex: An immunocytochemical analysis in serial thin sections. Neurosci. 35: 249–264.
    Google Scholar
  38. Van Eden, C. G., Hoorneman, E. M. D., Buijs, R. M., Matthijssen, M. A. H., Geffard, M., and Uylings, H. B. M. 1987. Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neurosci. 22:849–861.
    Google Scholar
  39. Glowinski, J., Herve, D., and Tassin, J. P. 1988. Heterologous regulation of receptors on target cells of dopamine neurons in the prefrontal cortex, nucleus accumbens, and striatum. Annals of the New York Acad. Of Sci. 537:112–123.
    Google Scholar
  40. Tassin, J. P. 1992. NE/DA interactions in prefrontal cortex and their possible roles as neuromodulators in schizophrenia. J. Neural Transm. 36:135–162.
    Google Scholar
  41. Carboni, E., Tanda, G. L., and Di Chiara, G. 1990. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: Evidence that dopamine is taken up in vivo by noradrenergic neurons. J. Neurochem. 55:1067–1069.
    Google Scholar
  42. Pozzi, L., Invernizzi, R., Cervo, L., Vallebuona, F., and Samanin, R. 1994. Evidence that extracellular concentrations of dopamine are regulated by noradrenergic neurons in the frontal cortex. J. Neurochem. 63:195–200.
    Google Scholar
  43. Rossetti, Z., Pani, L., Portas, C., and Gessa, G. 1989. Brain dialysis provides evidence for D2-dopamine receptors modulating noradrenaline release in the rat frontal cortex. Eur. J. Pharm. 163: 393–395.
    Google Scholar
  44. Dubocovich, M. L. 1984. Presynaptic receptors in the visual system. Ann. N.Y. Acad. Sci. 430:82–95.
    Google Scholar
  45. Ueda, H., Goshima, Y., and Misu, Y. 1983 Presynaptic mediation by 2-, 1-and 2-adrenoceptors of endogenous noradrenaline and dopamine release from slices of rat hypothalamus. Life Sci. 33: 371–376.
    Google Scholar
  46. Xu, K., Naveri, L., Frerichs, K. U., Hallenbeck, J. M., Feuerstein, G., Davis, J., and Siren, A. 1993. Extracellular catecholamine levels in rat hippocampus after a selective alpha-2 adrenoreceptor antagonist or a selective dopamine uptake inhibitor: Evidence for dopamine release from local dopaminergic nerve terminals. J. Pharm. Exp. Therap. 267:211–217.
    Google Scholar
  47. Raiteri, M., del Carmine, R., and Bertollini, A. 1977. Effect of desmethylimipramine on the release of various agents in hypothalamic synaptosomes. Molec. Pharmacol. 13:746–758.
    Google Scholar
  48. Izenwasser, S., Werling, L. L., and Cox, B. M. 1990. Comparison of the effects of cocaine and other inhibitors of dopamine uptake in rat striatum, nucleus accumbens, olfactory tubercle, and medial prefrontal cortex. Brain Res. 520:303–309.
    Google Scholar
  49. King, D. K. and Finlay, J. M. 1995. Effects of selective dopamine depletion in medial prefrontal cortex on basal and evoked extracellular dopamine in neostriatum. Brain Res. 685:117–128.
    Google Scholar
  50. King, D., Zigmond, M. J., and Finlay, J. M. 1997. Effects of dopamine depletion in the medial prefrontal cortex on the stressinduced increase in extracellular dopamine in the nucleus accumbens core and shell. Neurosci. (in press).
  51. Deutch, A. Y., Clark, W. A., and Roth, R. H. 1990. Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res. 521:311–315.
    Google Scholar
  52. King, D., Harden, D. G., Grace, A. A., Zigmond, M. J., and Finlay, J. M. 1996. Mechanisms underlying the effects of dopamine loss in the medial prefrontal cortex on the activity of mesolimbic dopamine neurons. Soc. Neurosci. Abst. 22:162.
    Google Scholar
  53. Giorguieff, M. F., Kemel, M. L., and Glowinski, J. 1977. Presynaptic effect of L-glutamic acid on dopamine release in rat striatal slices. Neurosci. Letts. 6:77–88.
    Google Scholar
  54. Roberts, P. J. and Sharif, N. A. 1978. Effects of 1-glutamate and related amino acids upon the release of [3H] dopamine from rat striatal slices. Brain Res. 157:391–5.
    Google Scholar
  55. Carter, C. J., L'Heureux, R., and Scatton, B. 1988. Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: A trans-striatal dialysis study. J. Neurochem. 51: 462–468.
    Google Scholar
  56. Shimizu, N., Duan, S. M., Hori, T., and Oomaru, Y. 1990. Glutamate modulates dopamine release in the striatum as measured by brain microdialysis. Brain Res. Bul. 25:99–102.
    Google Scholar
  57. Moghaddam, B. and Gruen, R. J. 1991. Do endogenous excitatory amino acids influence striatal dopamine release? Brain Res. 544: 329–30.
    Google Scholar
  58. Keefe, K. A., Zigmond, M. J., and Abercrombie, E. D. 1992. Extracellular dopamine in striatum: influence of nerve impulse activity in medial forebrain bundle and local glutamatergic input. Neurosci. 47:325–332.
    Google Scholar
  59. Keefe, K. A., Sved, A. F., Zigmond, M. J., and Abercrombie, E. D. 1993. Stress-induced dopamine release in the neostriatum: evaluation of the role of action potentials in nigrostriatal dopamine neurons or local initiation by endogenous excitatory amino acids. J. Neurochem. 61:1943–1952.
    Google Scholar
  60. Karreman, M., Westerink, B. H., and Moghaddam, B. 1996. Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J. Neurochem. 67:601–607.
    Google Scholar
  61. Taber, M. T., Das, S., and Fibiger, H. C. 1995. Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J. Neurochem. 65:1407----.
    Google Scholar
  62. Leviel, V., Gobert, A., and Guitert, B. 1990. The glutamate-mediated release of dopamine in the rat striatum: further characterization of the dual excitatory-inhibitory function. Neurosci. 39: 305–312.
    Google Scholar
  63. Arias-Montano, J. A., Martinez-Fong, D., and Aceves, J. 1992. Glutamate stimulation of tyrosine hydroxylase is mediated by NMDA receptors in the rat striatum. Brain Res. 569:317–322.
    Google Scholar
  64. Castro, S. L., Sved, A. F., and Zigmond, M. J. 1996. Increased neostriatal tyrosine hydroxylation during stress: role of extracellular dopamine and excitatory amino acids. J. Neurochem. 66: 824–833.
    Google Scholar
  65. Castro, S. L. and Zigmond, M. J. 1996. Endogenous glutamate in substantia nigra mediates the stress-induced increase in striatal extracellular dopamine. Soc. Neurosci. Abstr. 22:162.
    Google Scholar
  66. Blanc, G., Herve, D., Simon, H. Lisoprawski, A., Glowinski, J., and Tassin, J. P. 1980. Response to stress of mesocortico-frontal dopaminergic neurons in rats after long-term isolation. Nature 284:265–267.
    Google Scholar
  67. Kalivas, P. W. and Duffy, P. 1989. Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biological Psychiat. 25:913–928.
    Google Scholar
  68. Matthysse, S. 1974. Dopamine and the pharmacology of schizophrenia: The state of the evidence. J. Psych. Res. 11:107–13.
    Google Scholar
  69. Creese, I., Burt, D. R., and Snyder, S. H. 1976. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 192:481–3.
    Google Scholar
  70. Seeman, P., Lee, T., Chau-Wong, M., and Wong, K. 1976. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 261:717–9.
    Google Scholar
  71. Angrist, B., Peselow, E., Rubinstein, M., Wolkin, A., and Rotrosen, J. 1985. Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharm. 85:277–83.
    Google Scholar
  72. Snyder, S. H. 1973. Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Amer. J. Psych. 130:61–7.
    Google Scholar
  73. van Kammen, D. P., Bunney, W. E. Jr., Docherty, J. P., Marder, S. R., Ebert, M. H., Rosenblatt, J. E., and Rayner, J. N. 1982. Amer. J. Psych. 139:991–7.
    Google Scholar
  74. Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 205:929–32.
    Google Scholar
  75. Deutch, A. Y. 1992. The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine and the pathogenesis of schizophrenia. J. Neural Transm. 91:197–221.
    Google Scholar
  76. Grace, A. A. 1991. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neurosci. 41:1–24.
    Google Scholar
  77. Robbins, T. W. 1990. The case for frotostriatal dysfunction in schizophrenia. Schizophrenia Bull. 16:391–402.
    Google Scholar
  78. Weinberger, D. R. 1987. Implications of normal brain development for the pathogenesis of schizophrenia. Archs. Gen. Psychiat. 44:660–669.
    Google Scholar

Download references