The Effects of Stress on Central Dopaminergic Neurons: Possible Clinical Implications (original) (raw)
REFERENCES
Natelson, B. H. 1983. Stress, predisposition and the onset of serious disease: implications about psychosomatic etiology. Neurosci. Biobehav. Rev. 7:511–527. Google Scholar
Anisman, H. and Zacharko, R. M. 1990. Multiple neurochemical and behavioral consequences of stressors: implications for depression. Pharm. Therapeutics. 46:119–136. Google Scholar
Caldecott-Hazard, S., Morgan, D. G., DeLeon-Jones, F., Overstreet, D. H., and Janowsky, D. 1991. Clinical and biochemical aspects of depressive disorders: II. Transmitter/receptor theories. Synapse 9:251–301. Google Scholar
Nutt, D. J. and Glue, P. 1989. Clinical pharmacology of anxiolytics and antidepressants: a psychopharmacological perspective. Pharmacol Theories 44:309–334. Google Scholar
Bornstein, R. A., Stefl, M. E., and Hammond, L. 1990. A survey of Tourette syndrome patients and their families: the 1987 Ohio Tourette Survey. J. Neuropsych. & Clin. Neurosci. 2:275–281. Google Scholar
Schwab, R. S. and Zieper, I. 1965. Effects of mood, motivation, stress, and alertness on the performance in Parkinson's disease. Psychiat. Neurol. (Basel) 150:345–357. Google Scholar
Blum, K., Sheridan, P. J., Wood, R. C., Braverman, E. R., Chen, T. J., and Comings, D. E. 1995. Dopamine D2 receptor gene variants: association and linkage studies in impulsive-addictive-compulsive behavior. Pharmacogen. 5:121–141. Google Scholar
Deutch, A. Y. 1993. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson's disease. J. Neural Transm. 91: 197–221. Google Scholar
Fibiger, H. C. 1995. Neurobiology of depression: focus on dopamine. Adv. Biochem. Psychopharm. 49:1–17. Google Scholar
Zigmond, M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A., and Stricker, E. M. Compensations after lesions of central dopaminergic neurons: Some clinical and basic implications. Trends in Neurosci. 13:290–296, 1990. Google Scholar
Thierry, A. M., Tassin, J. P., Blanc, G., and Glowinski, J. 1976. Selective activation of mesocortical DA system by stress. Nature. 263:242–4. Google Scholar
Deutch, A. Y., Tam, S. Y., et al. 1985. Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res. 333: 143–146. Google Scholar
Dunn, A. J. and File, S. E. 1983. Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens, and neostriatum. Physiological Behav. 31:511–513. Google Scholar
Fadda, F., Argiolas, A., Melis, M. R., Tissari, A. H., Onali, P. L., and Gessa, G. L. 1978. Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: reversal by diazepam. Life Sci. 23:2219–2224. Google Scholar
Herman, J. P., Guillonneau, D., et al. 1982. Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30:2207–2214. Google Scholar
Abercrombie, E. D., Keefe, K. A., DiFrischa, D. S., and Zigmond, M. J. 1989. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52:1655–1658. Google Scholar
Gresch, P. J., Sved, A. F., Zigmond, M. J., and Finlay, J. M. 1995. Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J. Neurochem. 65:111–116. Google Scholar
Deutch, A. Y. et al., 1991. Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex. Cerebral Cortex 1:273–92. Google Scholar
Wolf, M. E. and Roth, R. H. 1987. Dopamine Autoreceptors. Pages 45–96, in Creese, I., and Fraser, C. M. (eds.). Dopamine Receptors. Alan R. Liss, New York. Google Scholar
White, F. J. and Wang, R. Y. 1983. Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sci. 32:983–993. Google Scholar
Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., and Bunney, B. S. (1984) Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neurosci. 12:1–16. Google Scholar
Bannon, M. J., Bunney, E. B., and Roth, R. H. 1981. Mesocortical dopamine neurons: rapid transmitter turnover compared to other brain catecholamine systems. Brain Res. 218:376–382. Google Scholar
Bannon, M. J. and Roth, R. H. 1983. Pharmacology of mesocortical dopamine neurons. Pharm. Rev. 35:53–68. Google Scholar
Cedarbaum, J. M. and Aghajanian, G. K. 1978. Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci. 23:1383–1392. Google Scholar
Abercrombie, E. D. and Jacobs, B. L. 1987. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stimuli. J. Neurosci. 7:2844–2848. Google Scholar
Grant, S. J., Aston-Jones, G., and Redmond, D. E. 1988. Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res. Bull. 21:401–410. Google Scholar
Aston-Jones, G., Chiang, C., and Alexinsky, T. 1991. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress Brain Research 88: 501–520. Google Scholar
Thierry, A. M., Javoy, F., Glowinski, J., and Kety, S. S. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J. Pharmacol. Exp. Therap. 163:162–171. Google Scholar
Korf, J., Aghajanian, G. K., and Roth, R. H. 1973. Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacol 12:933–938. Google Scholar
Mermet, C. C. and Ganon, F. G. 1988. Ether stress stimulates noradrenaline release in the hypothalamic paraventricular nucleus. Neuroendocrinol 47:75–82. Google Scholar
Yakoo, H., Tanaka, M., Yoshida, M., Tsuda, A., Tanaka, T., and Mizoguchi, K. 1990. Direct evidence of conditioned fear-elicited enhancement of noradrenaline release in the rat hypothalamus assessed by intracranial microdialysis. Brain Res. 536:305–308. Google Scholar
Nakata, T., Kogosov, E., and Alexander, N. 1991. Effect of environmental stress on release of norepinephrine in posterior hypothalamus in awake rats: role of sinoaortic nerves. Life Sci. 48:2021–6. Google Scholar
Nisenbaum, L. K., Zigmond, M. J., Sved, A. F., and Abercrombie, E. D. 1991. Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J. Neurosci. 11:1478–1484. Google Scholar
Grenhoff, J., Nisell, M., Ferre, S., Aston-Jones, G., and Svensson, T. H. 1993. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J. Neural Transm. 93:11–25. Google Scholar
Audet, M. A., Doucet, G., Oleskevich, S., and Descarries, L. 1988. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J. Comp. Neurol. 274:307–318. Google Scholar
Descarries, L., Lemay, B., Doucet, G., and Berger, B. 1987. Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neurosci. 21:807–821. Google Scholar
Séguéla, P., Watkins, K. C., Geffard, M., and Descarries, L. 1990. Noradrenaline axon terminals in adult rat neocortex: An immunocytochemical analysis in serial thin sections. Neurosci. 35: 249–264. Google Scholar
Van Eden, C. G., Hoorneman, E. M. D., Buijs, R. M., Matthijssen, M. A. H., Geffard, M., and Uylings, H. B. M. 1987. Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neurosci. 22:849–861. Google Scholar
Glowinski, J., Herve, D., and Tassin, J. P. 1988. Heterologous regulation of receptors on target cells of dopamine neurons in the prefrontal cortex, nucleus accumbens, and striatum. Annals of the New York Acad. Of Sci. 537:112–123. Google Scholar
Tassin, J. P. 1992. NE/DA interactions in prefrontal cortex and their possible roles as neuromodulators in schizophrenia. J. Neural Transm. 36:135–162. Google Scholar
Carboni, E., Tanda, G. L., and Di Chiara, G. 1990. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: Evidence that dopamine is taken up in vivo by noradrenergic neurons. J. Neurochem. 55:1067–1069. Google Scholar
Pozzi, L., Invernizzi, R., Cervo, L., Vallebuona, F., and Samanin, R. 1994. Evidence that extracellular concentrations of dopamine are regulated by noradrenergic neurons in the frontal cortex. J. Neurochem. 63:195–200. Google Scholar
Rossetti, Z., Pani, L., Portas, C., and Gessa, G. 1989. Brain dialysis provides evidence for D2-dopamine receptors modulating noradrenaline release in the rat frontal cortex. Eur. J. Pharm. 163: 393–395. Google Scholar
Dubocovich, M. L. 1984. Presynaptic receptors in the visual system. Ann. N.Y. Acad. Sci. 430:82–95. Google Scholar
Ueda, H., Goshima, Y., and Misu, Y. 1983 Presynaptic mediation by 2-, 1-and 2-adrenoceptors of endogenous noradrenaline and dopamine release from slices of rat hypothalamus. Life Sci. 33: 371–376. Google Scholar
Xu, K., Naveri, L., Frerichs, K. U., Hallenbeck, J. M., Feuerstein, G., Davis, J., and Siren, A. 1993. Extracellular catecholamine levels in rat hippocampus after a selective alpha-2 adrenoreceptor antagonist or a selective dopamine uptake inhibitor: Evidence for dopamine release from local dopaminergic nerve terminals. J. Pharm. Exp. Therap. 267:211–217. Google Scholar
Raiteri, M., del Carmine, R., and Bertollini, A. 1977. Effect of desmethylimipramine on the release of various agents in hypothalamic synaptosomes. Molec. Pharmacol. 13:746–758. Google Scholar
Izenwasser, S., Werling, L. L., and Cox, B. M. 1990. Comparison of the effects of cocaine and other inhibitors of dopamine uptake in rat striatum, nucleus accumbens, olfactory tubercle, and medial prefrontal cortex. Brain Res. 520:303–309. Google Scholar
King, D. K. and Finlay, J. M. 1995. Effects of selective dopamine depletion in medial prefrontal cortex on basal and evoked extracellular dopamine in neostriatum. Brain Res. 685:117–128. Google Scholar
King, D., Zigmond, M. J., and Finlay, J. M. 1997. Effects of dopamine depletion in the medial prefrontal cortex on the stressinduced increase in extracellular dopamine in the nucleus accumbens core and shell. Neurosci. (in press).
Deutch, A. Y., Clark, W. A., and Roth, R. H. 1990. Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res. 521:311–315. Google Scholar
King, D., Harden, D. G., Grace, A. A., Zigmond, M. J., and Finlay, J. M. 1996. Mechanisms underlying the effects of dopamine loss in the medial prefrontal cortex on the activity of mesolimbic dopamine neurons. Soc. Neurosci. Abst. 22:162. Google Scholar
Giorguieff, M. F., Kemel, M. L., and Glowinski, J. 1977. Presynaptic effect of L-glutamic acid on dopamine release in rat striatal slices. Neurosci. Letts. 6:77–88. Google Scholar
Roberts, P. J. and Sharif, N. A. 1978. Effects of 1-glutamate and related amino acids upon the release of [3H] dopamine from rat striatal slices. Brain Res. 157:391–5. Google Scholar
Carter, C. J., L'Heureux, R., and Scatton, B. 1988. Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: A trans-striatal dialysis study. J. Neurochem. 51: 462–468. Google Scholar
Shimizu, N., Duan, S. M., Hori, T., and Oomaru, Y. 1990. Glutamate modulates dopamine release in the striatum as measured by brain microdialysis. Brain Res. Bul. 25:99–102. Google Scholar
Moghaddam, B. and Gruen, R. J. 1991. Do endogenous excitatory amino acids influence striatal dopamine release? Brain Res. 544: 329–30. Google Scholar
Keefe, K. A., Zigmond, M. J., and Abercrombie, E. D. 1992. Extracellular dopamine in striatum: influence of nerve impulse activity in medial forebrain bundle and local glutamatergic input. Neurosci. 47:325–332. Google Scholar
Keefe, K. A., Sved, A. F., Zigmond, M. J., and Abercrombie, E. D. 1993. Stress-induced dopamine release in the neostriatum: evaluation of the role of action potentials in nigrostriatal dopamine neurons or local initiation by endogenous excitatory amino acids. J. Neurochem. 61:1943–1952. Google Scholar
Karreman, M., Westerink, B. H., and Moghaddam, B. 1996. Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J. Neurochem. 67:601–607. Google Scholar
Taber, M. T., Das, S., and Fibiger, H. C. 1995. Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J. Neurochem. 65:1407----. Google Scholar
Leviel, V., Gobert, A., and Guitert, B. 1990. The glutamate-mediated release of dopamine in the rat striatum: further characterization of the dual excitatory-inhibitory function. Neurosci. 39: 305–312. Google Scholar
Arias-Montano, J. A., Martinez-Fong, D., and Aceves, J. 1992. Glutamate stimulation of tyrosine hydroxylase is mediated by NMDA receptors in the rat striatum. Brain Res. 569:317–322. Google Scholar
Castro, S. L., Sved, A. F., and Zigmond, M. J. 1996. Increased neostriatal tyrosine hydroxylation during stress: role of extracellular dopamine and excitatory amino acids. J. Neurochem. 66: 824–833. Google Scholar
Castro, S. L. and Zigmond, M. J. 1996. Endogenous glutamate in substantia nigra mediates the stress-induced increase in striatal extracellular dopamine. Soc. Neurosci. Abstr. 22:162. Google Scholar
Blanc, G., Herve, D., Simon, H. Lisoprawski, A., Glowinski, J., and Tassin, J. P. 1980. Response to stress of mesocortico-frontal dopaminergic neurons in rats after long-term isolation. Nature 284:265–267. Google Scholar
Kalivas, P. W. and Duffy, P. 1989. Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biological Psychiat. 25:913–928. Google Scholar
Matthysse, S. 1974. Dopamine and the pharmacology of schizophrenia: The state of the evidence. J. Psych. Res. 11:107–13. Google Scholar
Creese, I., Burt, D. R., and Snyder, S. H. 1976. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 192:481–3. Google Scholar
Seeman, P., Lee, T., Chau-Wong, M., and Wong, K. 1976. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 261:717–9. Google Scholar
Angrist, B., Peselow, E., Rubinstein, M., Wolkin, A., and Rotrosen, J. 1985. Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharm. 85:277–83. Google Scholar
Snyder, S. H. 1973. Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Amer. J. Psych. 130:61–7. Google Scholar
van Kammen, D. P., Bunney, W. E. Jr., Docherty, J. P., Marder, S. R., Ebert, M. H., Rosenblatt, J. E., and Rayner, J. N. 1982. Amer. J. Psych. 139:991–7. Google Scholar
Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 205:929–32. Google Scholar
Deutch, A. Y. 1992. The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine and the pathogenesis of schizophrenia. J. Neural Transm. 91:197–221. Google Scholar
Grace, A. A. 1991. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neurosci. 41:1–24. Google Scholar
Robbins, T. W. 1990. The case for frotostriatal dysfunction in schizophrenia. Schizophrenia Bull. 16:391–402. Google Scholar
Weinberger, D. R. 1987. Implications of normal brain development for the pathogenesis of schizophrenia. Archs. Gen. Psychiat. 44:660–669. Google Scholar