The Central 5-HT3 Receptor in CNS Disorders (original) (raw)
REFERENCES
Aghajanian, G. K., and Bloom, F. E. 1967. Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography. J. Pharmacol. Exp. Ther. 156(1):23–30. Google Scholar
Aghajanian, G. K., Bloom, F. E., and Sheard, M. H. 1969. Electron microscopy of degeneration within the serotonin pathway of rat brain. Brain Res. 13(2):266–273. Google Scholar
Bloom, F. E. 1969. Serotonin neurons: localization and possible physiological role. Adv. Biochem. Psychopharmacol. 1:28–47. Google Scholar
de Lima, A. D., Bloom, F. E., and Morrison, J. H. 1988. Synaptic organization of serotonin-immunoreactive fibers in primary visual cortex of the macaque monkey. J. Comp. Neurol. 274(2):280–294. Google Scholar
Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A. 1972. Effects of serotonin on central neurons: microiontophoretic administration. Fed. Proc. 31(1):97–106. Google Scholar
Bloom, F. E. 1968. A discussion of control of brain serotonin and norepinephrine by specific neural systems. Adv. Pharmacol. 6(Pt A):207–209. Google Scholar
Bloom, F. E. 1968. Discussion of the comparative physiology of serotonin and melatonin. Adv. Pharmacol. 6(Pt A):298–300. Google Scholar
Aghajanian, G. K., Haigler, H. J., and Bloom, F. E. 1972. Lysergic acid diethylamide and serotonin: direct actions on serotonin-containing neurons in rat brain. Life Sci. [I] 11(13):615–622. Google Scholar
Weiss, F., Lorang, M. T., Bloom, F. E., and Koob, G. F. 1993. Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J. Pharmacol. Exp. Ther. 267(1):250–258. Google Scholar
Weiss, F., Parsons, L. H., Schulteis, G., Hyytia, P., Lorang, M. T., Bloom, F. E., and Koob, G. F. 1996. Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J. Neurosci. 16(10):3474–3485. Google Scholar
Derkach, V., Suprenant, A., and North, R. 1989. 5-HT3 receptors are membrane ion channels. Nature 33:9706–9709. Google Scholar
Glennon, R. A., and Dukat, M. 1995. Serotonin Receptor Subtypes. Pages 415–430, in Bloom, F. E., and Kupfer, D. J. (eds.), Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York. Google Scholar
Gaddum, J. H., and Picarelli, Z. P. 1957. Two kinds of tryptamine receptors. Br. J. Pharmacol. 12:323–328. Google Scholar
Peters, J., and Lambert, J. 1989. Electrophysiology of 5-HT3 receptors in neuronal cell lines. Trends Pharmacol. Sci. 10:172–174. Google Scholar
Maricq, A., Peterson, A., Brake, A., Myers, R., and Julius, D. 1991. Primary source and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 254:432–437. Google Scholar
Hope, A., Downie, D., Sutherland, L., Lambert, J., Peters, J., and Burchell, B. T. 1993. Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Eur. J. Pharmacol. 245:187–192. Google Scholar
Edwards, E., Harkins, K., Ashby, C. J., and Wang, R. 1991. Effect of 5-hydroxytryptamine3 receptor agonists on phosphoinositide hydrolysis in the rat fronto-cingulate and entorhinal cortices. J. Pharmacol. Exp. Ther. 256:1025–1032. Google Scholar
Kilpatrick, G. J., Jones, B. J., and Tyers, M. B. 1987. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330(6150):746–748. Google Scholar
Kilpatrick, G. J., Jones, B. J., and Tyers, M. B. 1988. The distribution of specific binding of the 5-HT3 receptor ligand [3H]GR65630 in rat brain using quantitative autoradiography. Neurosci. Lett. 94(1–2):156–160. Google Scholar
Kilpatrick, G. J., Jones, B. J., and Tyers, M. B. 1989. Binding of the 5-HT3 ligand, [3H]GR65630, to rat area postrema, vagus nerve and the brains of several species. Eur. J. Pharmacol. 159(2):157–164. Google Scholar
Barnes, J. M., Barnes, N. M., Champaneria, S., Costall, B., and Naylor, R. J. 1990. Characterization and autoradiographic localisation of 5-HT3 receptor recognition sites identified with [3H]-(S)-zacopride in the forebrain of the rat. Neuropharmacology 29(11):1037–1045. Google Scholar
Barnes, J. M., Barnes, N. M., Costall, B., Ironside, J. W., and Naylor, R. J. 1989. Identification and characterisation of 5-hydroxytryptamine3 recognition sites in human brain tissue. J. Neurochem. 53(6):1787–1793. Google Scholar
Barnes, N. M., Costall, B., Ironside, J. W., and Naylor, R. J. 1988. Identification of 5-HT3 recognition sites in human brain tissue using [3H]zacopride. J. Pharm. Pharmacol. 40(9):668. Google Scholar
Waeber, C., Hoyer, D., and Palacios, J. M. 1989. 5-hydroxytrypamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS 205–930. Neuroscience 31(2):393–400. Google Scholar
Waeber, C., Pinkus, L. M., and Palacios, J. M. 1990. The (S)-isomer of [3H]zacopride labels 5-HT3 receptors with high affinity in rat brain. Eur. J. Pharmacol. 181(3):283–287. Google Scholar
Pratt, G. D., and Bowery, N. G. 1989. The 5-HT3 receptor ligand, [3H]BRL 43694, binds to presynaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacology 28(12):1367–1376. Google Scholar
Gehlert, D. R., Gackenheimer, S. L., Wong, D. T., and Robertson, D. W. 1991. Localization of 5-HT3 receptors in the rat brain using [3H]LY278584. Brain Res. 553(1):149–154. Google Scholar
Laporte, A., Koscielniak, T., Ponchant, M., Verge, D., Hamon, M., and Gozlan, H. 1992. Quantitative autoradiographic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands. Synapse 10:271–281. Google Scholar
Campbell, A. D., and McBride, W. J. 1995. Serotonin-3 receptor and ethanol-stimulated dopamine release in the nucleus accumbens. Pharmacol Biochem. Behav. 51(4):835–842. Google Scholar
Imperato, A., and Angelucci, L. 1989. 5-HT3 receptors control dopamine release in the nucleus accumbens of freely moving rats. Neurosci. Lett. 101(2):214–217. Google Scholar
Invernizzi, R., Pozzi, L., and Samanin, R. 1995. Selective reduction of extracellular dopamine in the rat nucleus accumbens following chronic treatment with DAU 6215, a 5-HT3 receptor antagonist. Neuropharmacology 34(2):211–215. Google Scholar
McNeish, C. S., Svingos, A. L., Hitzemann, R., and Strecker, R. E. 1993. The 5-HT3 antagonist zacopride attenuates cocaine-induced increases in extracellular dopamine in rat nucleus accumbens. Pharmacol. Biochem. Behav. 45(4):759–763. Google Scholar
Yoshimoto, K., Yayama, K., Sorimachi, Y., Tani, J., Ogata, M., Nishimura, A., Yoshida, T., Ueda, S., and Komura, S. 1996. Possibility of 5-HT3 receptor involvement in alcohol dependence: a microdialysis study of nucleus accumbens dopamine and serotonin release in rats with chronic alcohol consumption. Alcohol Clin. Exp. Res. 20(9):311A-319A. Google Scholar
Tecott, L. H., Maricq, A. V., and Julius, D. 1993. Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc. Natl. Acad. Sci. USA 90(4):1430–1434. Google Scholar
Morales, M., Battenberg, E., de Lecea, L., Sanna, P. P., and Bloom, F. E. 1996. Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Mol. Brain Res. 36(2):251–260. Google Scholar
Morales, M., Battenberg, E., de Lecea, L., and Bloom, F. E. 1996. The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res. 731(1–2):199–202. Google Scholar
Morales, M., and Bloom, F. E. 1997. The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J. Neuroscience 17:3157–3167. Google Scholar
Somogyi, P., Hodgson, A., Smith, A., Nunzi, M., Gorio, A., and Wu, J.-Y. 1984. Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin-or cholecystokinin-immunoreactive material. J. Neuroscience 10:2590–2603. Google Scholar
Sloviter, R., and Nilaver, G. 1987. Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentate and hippocampus of the rat. J. Comp. Neurol. 256:42–60. Google Scholar
Morrison, J., Benoit, R., Magistretti, P., and Bloom, F. E. 1983. Immunohistochemical distribution of pro-somatostain-related peptides in cerebral cortex. Brain Res. 262:344–351. Google Scholar
Celio, M. R. 1990. Calbindin, D-28k, and parvalbumin in the rat nervous system. Neuroscience 301:417–432. Google Scholar
Celio, M. 1986. Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997. Google Scholar
Sanders-Bush, E., and Canton, H. 1995. Serotonin Receptors: Signal Transduction Pathways. Pages 431–442, in Bloom, F. E., and Kupfer, D. J. (eds.), Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York. Google Scholar
Wang, R., Ashby, C. J., and Zhang, J. 1996. Modulation of the A10 dopamine system: electrophysiological studies of the role of 5-HT3-like receptors. Behav. Brain Res. 73:7–10. Google Scholar
Hornung, J., and Celio, M. 1992. The selective innervation by serotonergic axons of calbindin-containing interneurons in the neocortex and hippocampus of the marmoset. J. Comp. Neurol. 320:457–467. Google Scholar
Freund, T., and Antal, M. 1988. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173. Google Scholar
Ropert, N., and Guy, N. 1991. Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J. Physiol. 441:121–136. Google Scholar
Corradetti, R., Ballerini, L., Pugliese, A., and Pepeu, G. 1992. Serotonin blocks the long-term potentiation induced by primed burst stimulation in the CA1 region of rat hippocampal slices. Neuroscience 46:511–518. Google Scholar
Maeda, T., Kaneko, S., and Satoh, M. 1994. Inhibitory influence via 5-HT3 receptors on the induction of LTP in mossy fiber-CA3 system of guinea-pig hippocampal slices. Neurosci. Res. 18:277–282. Google Scholar
Stäubli, U., and Xu, F. 1995. Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J. Neurosci. 15:2445–2452. Google Scholar
Tricklebank, M. 1996. The antipsychotic potential of subtype-selective 5-HT receptor ligands based on interactions with mesolimbic dopamine systems. Behav. Brain Res. 73:15–17. Google Scholar
Shader, R. I., and Greenblat, D. J. 1995. The Pharmacotherapy of Acute Anxiety. Pages 1341–1348, in Bloom, F. E., and Kupfer, D. J. (eds.), Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York. Google Scholar
Lucas, J. J., and Hen, R. 1995. New players in the 5-HT receptor field: genes and knockouts. Trends Pharmacol. Sci. 16(7):246–52. Google Scholar