NF-κB in Mammary Gland Development and Breast Cancer (original) (raw)
REFERENCES
S. Ghosh and M. Karin (2002). Missing pieces in the NF-κB puzzle. Cell109(Suppl):S81-S96. PubMed Google Scholar
M. Karin and A. Lin (2002). NF-κB at the crossroads of life and death. Nat. Immunol.3:221–227. PubMed Google Scholar
D. M. Rothwarf and M. Karin (1999). The NF-κB activation pathway: A paradigm in information transfer from membrane to nucleus. Sci. STKE1999:RE1. PubMed Google Scholar
M. J. May and S. Ghosh (1997). Rel/NF-κB and IκB proteins: An overview. Semin. Cancer Biol.8:63–73. PubMed Google Scholar
I. Verma, J. Stevenson, E. Schwarz, D. Van Antwerp, and S. Miyamoto (1995). Rel/NF-κB/IκB family: Intimate tales of association and dissociation. Genes Dev.9:2723–2735. PubMed Google Scholar
M. Karin and Y. Ben-Neriah (2000). Phosphorylation meets ubiquitination: The control of NF-[κ]B activity. Annu. Rev. Immunol.18:621–663. PubMed Google Scholar
E. Dejardin, N. M. Droin, M. Delhase, E. Haas, Y. Cao, C. Makris, et al. (2002). The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-κB pathways. Immunity17: 525–535. PubMed Google Scholar
H. Pahl (1999). Activators and target genes of Rel/NF-κB transcription factors. Oncogene18: 6853–6866. PubMed Google Scholar
M. Karin, Y. Cao, F. R. Greten, and Z. W. Li (2002). NF-κB in cancer: From innocent bystander to major culprit. Nature Rev. Cancer2:301–310. Google Scholar
B. Rayet and C. Gelinas (1999). Aberrant rel/nfkb genes and activity in human cancer. Oncogene18:6938–6947. PubMed Google Scholar
T. Gilmore, M. Koedood, K. Piffat, and D. White (1996). Rel/NF-κB/IκB proteins and cancer. Oncogene13: 1367–1378. PubMed Google Scholar
L. Hennighausen and G. W. Robinson (2001). Signaling pathways in mammary gland development. Dev. Cell1:467–475. PubMed Google Scholar
L. Hennighausen and G. W. Robinson (1998). Think globally, act locally: The making of a mouse mammary gland. Genes Dev.12: 449–455. PubMed Google Scholar
D. M. Brantley, F. E. Yull, R. S. Muraoka, D. J. Hicks, C. M. Cook, and L. D. Kerr (2000). Dynamic expression and activity of NF-κB during post-natal mammary gland morphogenesis. Mech. Dev.97:149–155. PubMed Google Scholar
R. W. Clarkson, J. L. Heeley, R. Chapman, F. Aillet, R. T. Hay, A. Wyllie, et al. (2000). NF-κB inhibits apoptosis in murine mammary epithelia. J. Biol. Chem.275: 12737–12742. PubMed Google Scholar
S. Geymayer and W. Doppler (2000). Activation of NF-κB p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediated beta-casein gene expression. FASEB J.14:1159–1170. PubMed Google Scholar
D. M. Brantley, C. L. Chen, R. S. Muraoka, P. B. Bushdid, J. L. Bradberry, F. Kittrell, et al. (2001). Nuclear factor-κB (NF-κB) regulates proliferation and branching in mouse mammary epithelium. Mol. Biol. Cell12:1445–1455. PubMed Google Scholar
Y. Cao, G. Bonizzi, T. N. Seagroves, F. R. Greten, R. Johnson, E. V. Schmidt, et al. (2001). IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell107: 763–775. PubMed Google Scholar
J. M. Shillingford, K. Miyoshi, G. W. Robinson, B. Bierie, Y. Cao, M. Karin, et al. (2003). Proteotyping of mammary tissue from transgenic and gene knockout mice with immunohistochemical markers. A tool to define developmental lesions. J. Histochem. Cytochem.51: 555–565. PubMed Google Scholar
G. Luo and L. Yu-Lee (2000). Stat5b inhibits NF-kB-mediated signaling. Mol. Endocrinol.14: 114–123. PubMed Google Scholar
Y. Wang, T. R. Wu, S. Cai, T. Welte, and Y. E. Chin (2000). Stat1 as a component of tumor necrosis factor alpha receptor 1-TRADD signaling complex to inhibit NF-κB activation. Mol. Cell. Biol.20: 4505–4512. PubMed Google Scholar
R. W. Clarkson and C. J. Watson (1999). NF-κB and apoptosis in mammary epithelial cells. J. Mammary Gland Biol. Neoplasia4:165–175. PubMed Google Scholar
L. E. Theill, W. J. Boyle, and J. M. Penninger (2002). RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol.20:795–823. PubMed Google Scholar
J. E. Fata, Y. Y. Kong, J. Li, T. Sasaki, J. Irie-Sasaki, R. A. Moorehead, et al. (2000). The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell103:41–50. PubMed Google Scholar
L. Varela and M. Ip (1996). Tumor necrosis factor-alpha:A multifunctional regulator of mammary gland development. Endocrinology137:4915–4924. PubMed Google Scholar
P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell82:621–630. PubMed Google Scholar
V. Fantl, G. Stamp, A. Andrews, I. Rosewell, and C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev.9:2364–2372. PubMed Google Scholar
O. N. Ozes, L. D. Mayo, J. A. Gustin, S. R. Pfeffer, L. M. Pfeffer, and D. B. Donner (1999). NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature401:82–85. PubMed Google Scholar
J. A. Romashkova and S. S. Makarov (1999). NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature401:86–90. PubMed Google Scholar
K. L. Schwertfeger, M. M. Richert, and S. M. Anderson (2001). Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol.15:867–881. PubMed Google Scholar
J. Hutchinson, J. Jin, R. D. Cardiff, J. R. Woodgett, and W. J. Muller (2001). Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol. Cell. Biol.21:2203–2212. PubMed Google Scholar
S. Gerondakis, M. Grossmann, Y. Nakamura, T. Pohl, and R. Grumont (1999). Genetic approaches in mice to understand Rel/NF-kB and IkB functions: Transgenics and knockouts. Oncogene18:6888–6895. PubMed Google Scholar
A. A. Beg, W. C. Sha, R. T. Bronson, S. Ghosh, and D. Baltimore (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature376:167–170. PubMed Google Scholar
Z. W. Li, W. Chu, Y. Hu, M. Delhase, T. Deerinck, M. Ellisman, et al. (1999). The IKKbeta subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J. Exp. Med.189:1839–1845. PubMed Google Scholar
C. Makris, V. L. Godfrey, G. Krahn-Senftleben, T. Takahashi, J. L. Roberts, T. Schwarz, et al. (2000). Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell5:969–979. PubMed Google Scholar
P. C. Cogswell, D. C. Guttridge, W. K. Funkhouser, and A. S. BaldwinJr. (2000). Selective activation of NF-κB subunits in human breast cancer: Potential roles for NF-κB2/p52 and for Bcl-3. Oncogene19:1123–1131. PubMed Google Scholar
H. Nakshatri, P. Bhat-Nakshatri, D. A. Martin, R. J. GouletJr., and G. W. SledgeJr. (1997). Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol.17:3629–3639. PubMed Google Scholar
M. A. Sovak, R. E. Bellas, D. W. Kim, G. J. Zanieski, A. E. Rogers, A. M. Traish, et al. (1997). Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest.100:2952–2960. PubMed Google Scholar
R. Romieu-Mourez, E. Landesman-Bollag, D. C. Seldin, A. M. Traish, F. Mercurio, and G. E. Sonenshein (2001). Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-κB in breast cancer. Cancer Res.61:3810–3818. PubMed Google Scholar
D. W. Kim, M. A. Sovak, G. Zanieski, G. Nonet, R. Romieu-Mourez, A. W. Lau, et al. (2000). Activation of NF-κB/Rel occurs early during neoplastic transformation of mammary cells. Carcinogenesis21:871–879. PubMed Google Scholar
D. K. Biswas, S. C. Dai, A. Cruz, B. Weiser, E. Graner, and A. B. Pardee (2001). The nuclear factor κB (NF-κB): A potential therapeutic target for estrogen receptor negative breast cancers. Proc. Natl. Acad. Sci. U.S.A.98:10386–10391. PubMed Google Scholar
M. A. Sovak, M. Arsura, G. Zanieski, K. T. Kavanagh, and G. E. Sonenshein (1999). The inhibitory effects of transforming growth factor beta1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-κB/Rel expression. Cell Growth Differ.10:537–544. PubMed Google Scholar
E. Dejardin, G. Bonizzi, A. Bellahcene, V. Castronovo, M. P. Merville, and V. Bours (1995). Highly-expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene11:1835–1841. PubMed Google Scholar
S. D. Westerheide, M. W. Mayo, V. Anest, J. L. Hanson, and A. S. BaldwinJr. (2001). The putative oncopretein Bcl-3 induces cyclin D1 to stimulate G1 transition. Mol. Cell. Biol.21:8428–8436. PubMed Google Scholar
N. J. Solan, H. Miyoshi, G. D. Bren, and C. V. Paya (2002). RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem.277:1405–1418. PubMed Google Scholar
D. W. Kim, L. Gazourian, S. A. Quadri, R. Romieu-Mourez, D. H. Sherr, and G. E. Sonenshein (2000). The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene19:5498–5506. PubMed Google Scholar
E. L. Lagow and D. D. Carson (2002). Synergistic stimulation of MUC1 expression in normal breast epithelial and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. J. Cell Biochem86:759–772. PubMed Google Scholar
V. Deregowski, S. Delhalle, V. Benoit, V. Bours, and M. P. Merville (2002). Identification of cytokine-induced nuclear factor-κB target genes in ovarian and breast cancer cells. Biochem. Pharmacol.64:873–881. PubMed Google Scholar
T. S. Finco, J. K. Westwick, J. L. Norris, A. A. Beg, C. J. Der, and A. S. Baldwin Jr. (1997). Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem.272:24113–24116. PubMed Google Scholar
H. Jo, R. Zhang, H. Zhang, T. A. McKinsey, J. Shao, R. D. Beauchamp, et al. (2000). NF-κB is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene19:841–849. PubMed Google Scholar
S. Pianetti, M. Arsura, R. Romieu-Mourez, R. J. Coffey, and G. E. Sonenshein (2001). Her-2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene20:1287–1299. PubMed Google Scholar
B. P. Zhou, M. C. Hu, S. A. Miller, Z. Yu, W. Xia, S. Y. Lin, et al. (2000). HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway. J. Biol. Chem.275:8027–8031. PubMed Google Scholar
L. T. Amundadottir and P. Leder (1998). Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene16:737–746. PubMed Google Scholar
P. Bhat-Nakshatri, C. J. Sweeney, and H. Nakshatri (2002). Identification of signal transduction pathways involved in constitutive NF-κB activation in breast cancer cells. Oncogene21:2066–2078. PubMed Google Scholar
D. C. Guttridge, C. Albanese, J. Y. Reuther, R. G. Pestell, and A. S. BaldwinJr. (1999). NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol.19:5785–5799. PubMed Google Scholar
M. Hinz, D. Krappmann, A. Eichten, A. Heder, C. Scheidereit, and M. Strauss (1999). NF-κB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell. Biol.19:2690–2698. PubMed Google Scholar
T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature369:669–671. PubMed Google Scholar
Q. Yu, Y. Geng, and P. Sicinski (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature411:1017–1021. PubMed Google Scholar
I. Eto (2000). Molecular cloning and sequence analysis of the promoter region of mouse cyclin D1 gene: implication in phorbol ester-induced tumour promotion. Cell Prolif.33:167–187. PubMed Google Scholar