Metabotropic Glutamate Receptor Expression in Cultured Rat Astrocytes and Human Gliomas (original) (raw)

REFERENCES

  1. Nakanishi, S., and Masu, M. 1994. Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct. 23:319–348.
    Google Scholar
  2. Schoepp, D. D. 1994. Novel functions for subtypes of the metabotropic glutamate receptors. Neurochem Int 24:439–449.
    Google Scholar
  3. Pin, J. P., and Duvoisin, R. 1995. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 34:1–26.
    Google Scholar
  4. Teichberg, V. I. 1991. Glial glutamate receptors: likely actors in brain signaling. FASEB J. 5:3086–3091.
    Google Scholar
  5. Gallo, V., and Russel, J. T. 1995. Excitatory amino acid receptors in glia: different subtypes for distinct functions? J.Neurosci. Res. 42:1–8.
    Google Scholar
  6. Bowman, C. L., and Kimelberg, H. K. 1984. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.
    Google Scholar
  7. Kettenman, H., and Schachner, M. 1985. Pharmacological properties of γ-aminobutyric acid-, glutamate-, and aspartate-induced depolarization in cultured astrocytes. J. Neurosci. 5: 3295–3301.
    Google Scholar
  8. Sontheimer, H., Kettenman, H., Bckus, K. H., and Schachner, M. 1989. Glutamate opens Na+/K+ channels in cultured astrocytes. Glia 1:328–336.
    Google Scholar
  9. Backus, K. H., Kettenman H., and Schachner, M. 1989. Pharmacological characterization of the glutamate receptor in cultured astrocytes. J. Neurosci. Res. 22:274–282.
    Google Scholar
  10. Gallo, V., Upson, L. M., Hayes, W. P., Vyklicky, L., Winters, C., and Buonanno, A. 1992. Molecular Cloning and developmental analysis of a new glutamate receptor subunit isoform in cerebellum. J.Neurosci. 12:1010–1023.
    Google Scholar
  11. Condorelli, D. F., Dell'Albani, P., Corsaro, M., Barresi, V., and Giuffrida Stella A. M. 1993. AMPA-selective glutamate receptor subunits in astroglial cultures. J. Neurosci. Res. 36:344–356.
    Google Scholar
  12. Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L., and Gallo, V. 1994. Glial cells of the oligodendrocyte lineage express both kainate-and AMPA-preferring subtypes of glutamate receptor. Neuron. 12:357–371.
    Google Scholar
  13. Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. 1987. Astrocytes glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72: 335–340.
    Google Scholar
  14. Milani, D., Facci, L., Guidolin, D., Leon, A., and Skaper, S. D. 1989. Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells. Glia. 2:161–169.
    Google Scholar
  15. Nicoletti, F., Magri', G., Ingrao, F., Bruno, V., Catania, M. V., Dell'Albani, P., Condorelli, D. F., and Avola, R. 1990. Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduce proliferation in cultured astrocytes. J. Neurochem. 54:771–777.
    Google Scholar
  16. Condorelli, D. F., Ingrao, F., Magri', G., Bruno, V., Nicoletti, F., and Avola, R. 1989a. Activation of excitatory amino acid receptors reduces thymidine incorporation and cell proliferation rate in primary cultures of astrocytes. Glia. 2:67–69.
    Google Scholar
  17. Condorelli, D. F., Kaczmarek, L., Nicoletti, F., Arcidiacono, A., Dell'Albani, P., Ingrao, F., Magri', G., Malaguarnera, L., Avola, R., Messina, A., and Giuffrida Stella, A. M. 1989b. Induction of protooncogene fos by extracellular signals in primary glial cell cultures. J. Neurosci. Res. 23:234–239.
    Google Scholar
  18. McNaughton, L. A., and Hunt, S. P. 1992. Regulation of gene expression in astrocytes by excitatory amino acids. Mol. Brain Res. 16:261–266.
    Google Scholar
  19. Condorelli, D. F., Dell'Albani, P., Amico, C., Kaczmarek, L., Nicoletti, F., Lukasiuk, K., and Giuffrida Stella, A. M. 1993a. Induction of primary response genes by excitatory amino acid agonists in primary astroglial cultures. J. Neurochem. 60:877–885.
    Google Scholar
  20. Enkvist, M. O. H., Holopainen, I., and Akerman, K. E. O. 1989. Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia. 2:397–402.
    Google Scholar
  21. Ahmed, Z., Lewis, C. A., and Faber, D. S. 1990. Glutamate stimulates release of Ca2+ from internal stores in astroglia. Brain Res. 516:165–169.
    Google Scholar
  22. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M., and Smith, S. J. 1990. Glutamate induces calcium vawes in cultured astrocytes: long range glial signaling. Science. 247:470–473.
    Google Scholar
  23. Glaum, S. R., Holzwarth, J. A., and Miller, R. J. 1990. Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc. Natl. Acad: Sci. USA 87:3454–3458.
    Google Scholar
  24. Jensen, A. M., and Chiu, S. Y. 1990. Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci. 10:1165–1175.
    Google Scholar
  25. Charles, A. C., Merril, J. E., Dirksen, E. R., and Sanderson, M. J. 1991. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 6:983–992.
    Google Scholar
  26. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L. 1974. Clonal cell lines from the rat central nervous system. Nature 249: 224–227.
    Google Scholar
  27. Louis, J. C., Magal, E., Muir, D., Manthorpe, M., and Varon, S. 1992. CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res. 31:193–204.
    Google Scholar
  28. Kahn, M. A., and De Vellis, J. 1994. Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia. 12:87–98.
    Google Scholar
  29. Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
    Google Scholar
  30. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. 1991. Sequence and expression of a metabotropic glutamate receptor. Nature. 349:760–765.
    Google Scholar
  31. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. 1992. A family of metabotropic glutamate receptors. Neuron. 8: 169–179.
    Google Scholar
  32. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. 1992. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267:13361–13368.
    Google Scholar
  33. Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizunu, N., and Nakanishi, S. 1994. Molecular Characterization of a New Metabotropic Glutamate Rceptor mGluR7 Coupled to Inhibitory Cyclic AMP Signal Transduction. J. Bio. Chem. 269: 1231–1236.
    Google Scholar
  34. Feinberg, A. P., and Vogelstein, B. 1984. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 137:266–267.
    Google Scholar
  35. Condorelli, D. F., Dell'Albani, P., Amico, C., Casabona, G., Gennazzani, A. A., Sortino, M. A., and Nicoletti, F. 1992. Developmental profile of metabotropic glutamate receptor mRNA in rat brain. Mol. Pharmacol. 41:660–664.
    Google Scholar
  36. Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., and Nakanishi, S. 1993. Signal trasduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13:1372–1378.
    Google Scholar
  37. Ohishi, H., Ogawa-Meguro, R., Shigemoto, R., Kaneko, T., Nakanishi, S., and Mizuno, N. 1994. Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron. 13:55–66.
    Google Scholar
  38. Testa, C. M., Standaert, D. G., Young, A. B., and Penney, J. B. 1994. Metabotropic glutamate receptor expression in the basal ganglia of the rat. J. Neurosci. 14(5):3005–3018.
    Google Scholar
  39. Raff, M. C. 1989. Glial cell diversification in the rat optic nerve. Science 243:1450–1455.
    Google Scholar
  40. Miller, S., Bridges, R. J., and Cotman, C. W. 1993. Stimulation of phosphoinositide hydrolysis by trans-(±)-ACPD is greatly enhancedwhen astrocytes are cultured in a serum-free defined medium. Brain Res. 618:175–178.
    Google Scholar
  41. Segelon, J. E., Lipscomb, D. C., Haun, S. E., Trapp, V. L., and Horrocks, L. A. 1995. Astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation: role of the metabotropic glutamate receptor. J Neurochem. 65:1115–1123.
    Google Scholar
  42. Miller, S., Sehati, N., Romano, C., and Cotman, C. W. 1996. Exposure of astrocytes to thrombin reduces levels of the metabotropic glutamate receptor mGluR5. J. Neurochem. 67:1435–1447.
    Google Scholar
  43. Balázs, R., Miller, S., Romano, C., Chun, Y., de Vries, A., and C. Cotman. 1996. Metabotropic glutamate receptors in cerebral cortical astrocytes: pharmacological properties of mGluR5 and interaction between PLC-and adenylate cyclase (AC)-coupled transduction systems. Neuropharmacol. 5:A2.
    Google Scholar
  44. Prezeau, L., Carrette, J., Helpap, B., Curry, K., Pin, J. P., and Bockaert, J. 1993. Pharmacological characterization of metabotropic glutamate receptors in several types of brain cells in primary cultures. Mol. Pharmacol. 45:570–577.
    Google Scholar
  45. Miller, S., Romano, C., and Cotman, C. W. 1995. Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J. Neurosci. 15(9):6103–6109
    Google Scholar
  46. Louis, D. N., and Gusella, J.F. 1995. A tiger many doors: multiple genetic payhways to malignant glioma. Trends in Genetics 11: 412–415.
    Google Scholar
  47. Baba, A., Saga, H., and Hashimoto, H. 1993. Inhibitory glutamate response on cyclic AMP formation in cultured astrocytes. Neuroscience letters. 149:182–184.
    Google Scholar
  48. Ogata, T., Nakamura, Y., and Schubert, P. 1996. Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca++ related A1/A2 adenosine receptor cooperation. Eur. J. Neurosci 8:1124–1131.
    Google Scholar
  49. Winder, D. G., Ritch, P. S., Gereau, R. W., and Conn, P. J. 1996. Novel glial-neuronal signalling by coactivation of metabotropic glutamate and β-adrenergic receptors in rat hippocampus. J Physiol. 494:743–755.
    Google Scholar
  50. Winder, D. G., and Conn, J. P. 1996. Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication. J. Neurosci. Res. 46:131–137.
    Google Scholar
  51. Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N. 1993. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335:252–266.
    Google Scholar
  52. Petralia, R. S., Wang, Y.-X., Niedzielski, A. S., and Wenthold, R. J. 1996. The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976.
    Google Scholar

Download references