Mechanisms of Apoptosis in the Heart (original) (raw)
References
Searle J, Kerr JF, Bishop CJ: Necrosis and apoptosis: Distinct modes of cell death with fundamentally different significance. Pathol Annu 17(Pt2):229–259, 1982 Google Scholar
Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15, 1995 Google Scholar
Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigram MJ, Dec GW, Khaw BA: Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189, 1996 Google Scholar
Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine, G: Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 335:1190–1196, 1996 Google Scholar
Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, and Anversa P: Apoptosis in the failing human heart. N Engl J Med 336:1131–1141, 1997 Google Scholar
Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, VoipioPulkki, LM: Apoptosis in human acute myocardial infarction. Circulation 95:320–323, 1997 Google Scholar
Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M: Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75:426–433, 1994 Google Scholar
Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P: Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247–2259, 1995 Google Scholar
Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL: Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628, 1994 Google Scholar
Fliss H, Gattinger D: Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956, 1996 Google Scholar
Tartaglia LA, Ayres TM, Wong GH, Goeddel DV: A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845–853, 1993 Google Scholar
Itoh N, Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937, 1993 Google Scholar
Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512, 1995 Google Scholar
Hsu H, Xiong J, Goeddel DV: The TNF receptor 1—associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504, 1995 Google Scholar
Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85:803–815, 1996 Google Scholar
Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, and Dixit VM: FLICE, a novel FADD-homologous ICE/CED-3—like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827, 1996 Google Scholar
Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada, M: Caspases are activated in a branched protease cascade and control distinct downstream processes inFas-induced apoptosis. J Exp Med 187:587–600, 1998 Google Scholar
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, and Martin SJ: Ordering the cytochrome _c_-initiated caspase cascade: Hierarchicalactivation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 144:281–292, 1999 Google Scholar
Liu ZG, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–576, 1996 Google Scholar
Beg AA, Baltimore, D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784, 1996 Google Scholar
Wang CY, Mayo MW, Baldwin AS, Jr: TNF-and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB. Science 274:784–787, 1996 Google Scholar
Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma, IM: Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274:787–789, 1996 Google Scholar
Yamaguchi S, Yamaoka M, Okuyama M, Nitoube J, Fukui A,Shirakabe M, Shirakawa K, Nakamura N, Tomoike, H: Elevated circulating levels and cardiac secretion of soluble Fas ligand in patients with congestive heart failure. Am J Cardiol 83:1500-1503, A8, 1999 Google Scholar
Nishigaki K, Minatoguchi S, Seishima M, Asano K, Noda T,Yasuda N, Sano H, Kumada H, Takemura M, Noma A, Tanaka T, Xatanabe S, and Fujiwara H: Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. J Am Coll Cardiol 29:1214–1220, 1997 Google Scholar
Schumann H, Morawietz H, Hakim K, Zerkowski HR, Eschenhagen T, Holtz J, Darmer, D: Alternative splicing of the primary Fas transcript generating soluble Fas antagonists is suppressed in the failing human ventricular myocardium. Biochem Biophys Res Commun 239:794–798, 1997 Google Scholar
Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107, 1996 Google Scholar
Hayakawa K, Takemura G, Koda M, Kawase Y, Maruyama R, Li Y, Minatoguchi S, Fujiwara T, Fujiwara, H: Sensitivity to apoptosis signal, clearance rate, and ultrastructure of fas ligand-induced apoptosis in in vivo adult cardiac cells. Circulation 105:3039–3045, 2002 Google Scholar
Wollert KC, Heineke J, Westermann J, Ludde M, Fiedler B, Zierhut W, Laurent D, Bauer MK, Schulze-Osthoff K, Drexler H: The cardiac Fas (APO-1/CD95) Receptor/Fas ligand system: Relation to diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. Circulation 101:1172–1178, 2000 Google Scholar
Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J,Nakamura N, Mitsui Y, Tomoike, H: Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. J Mol Cell Cardiol 32:881–889, 2000 Google Scholar
Yaniv G, Shilkrut M, Lotan R, Berke G, Larisch S, Binah O: Hypoxia predisposes neonatal rat ventricular myocytes to apoptosis induced by activation of the Fas (CD95/Apo-1) receptor: Fas activation and apoptosis in hypoxic myocytes. Cardiovasc Res 54:611–623, 2002 Google Scholar
Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S: Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809, 1993 Google Scholar
Webster KA, Bodi I, McNamara JP, Tracy M, Discher DJ, Bishopric NH: Negative lusitropy and abnormal calcium handling in hypoxic cardiac myocytes exposed to the calcium-sensitizer EMD 53998. J Mol Cell Cardiol 25:747–751, 1993 Google Scholar
Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E: Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578, 2000 Google Scholar
Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN: Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284:H456-H463, 2003 Google Scholar
Jeremias I, Kupatt C, Martin-Villalba A, Habazettl H, Schenkel J, Boekstegers P, Debatin KM: Involvement of CD95/Apol/Fas in cell death after myocardial ischemia. Circulation 102:915–920, 2000 Google Scholar
Ohtsuka T, Hamada M, Hiasa G, Sasaki O, Suzuki M, Hara Y, Shigematsu Y, Hiwada K: Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J Am Coll Cardiol 37:412–417, 2001 Google Scholar
Maury CP, Teppo AM: Circulating tumour necrosis factor-alpha (cachectin) in myocardial infarction. J Intern Med 225:333–336, 1989 Google Scholar
Lefer AM, Tsao P, Aoki N, Palladino MA, Jr: Mediation of cardioprotection by transforming growth factor-beta. Science 249:61–64, 1990 Google Scholar
Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O: Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486, 1995 Google Scholar
Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P: Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351:1091–1093, 1998 Google Scholar
Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B: The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 90:693–698, 1992 Google Scholar
Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL: Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052, 1995 Google Scholar
Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL: Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493, 1995 Google Scholar
Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, and Mann DL: Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711, 1996 Google Scholar
Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V,Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA: Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865, 1996 Google Scholar
Eddy LJ, Goeddel DV, Wong GH: Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 184:1056–1059, 1992 Google Scholar
Nakano M, Knowlton AA, Dibbs Z, Mann DL: Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97:1392–1400, 1998 Google Scholar
Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL: Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 97:5456–5461, 2000 Google Scholar
Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr: NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683, 1998 Google Scholar
Barth E, Stammler G, Speiser B, Schaper J: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 24:669–681, 1992 Google Scholar
Zou H, Li Y, Liu X, Wang X: An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556, 1999 Google Scholar
Du C, Fang M, Li Y, Li L, Wang X: Smac, a mitochondrial protein that promotes cytochrome _c_-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42, 2000 Google Scholar
Verhagen AM, Ekert PG, Pakusch M, Silk J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53, 2000 Google Scholar
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aepersold R, Siderovski DP, Penninger JM, and Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446, 1999 Google Scholar
Li LY, Luo X, Wang X: Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99, 2001 Google Scholar
Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D: Mitochondrial endonuclease G is important for apoptosis in C elegans. Nature 412:90–94, 2001 Google Scholar
Green DR, Reed JC: Mitochondria and apoptosis. Science 281:1309–1312, 1998 Google Scholar
Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, and Reed JC: Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96:5752–5757, 1999 Google Scholar
Borutaite V, Morkuniene R, Brown GC: Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453:41–48, 1999 Google Scholar
Bialik S, Cryns VL, Drincic A, Miyata S, Wollowick AL,Srinivasan A, Kitsis, RN: The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85:403–414, 1999 Google Scholar
Cook SA, Sugden PH, Clerk A: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: Association with changes in mitochondrial membrane potential. Circ Res 85:940–949, 1999 Google Scholar
Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC, III, Nunez G: ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85:e70-e77, 1999 Google Scholar
von Harsdorf R, Li PF, Dietz R: Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941, 1999 Google Scholar
Malhotra R, Brosius FC, III: Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274:12567–12575, 1999 Google Scholar
Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, and Kharpanda S: Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96:8144–8149, 1999 Google Scholar
De Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum, LA: Caspase activation and mitochondrial cytochrome c release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32:53–63, 2000 Google Scholar
Xiao Y, He J, Gilbert RD, Zhang L: Cocaine induces apoptosis in fetal myocardial cells through a mitochondria-dependent pathway. J Pharmacol Exp Ther 292:8–14, 2000 Google Scholar
Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S: Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes J Biol Chem 277:10244–10250, 2002 Google Scholar
Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S: Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125, 2000 Google Scholar
Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA: Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728, 2001 Google Scholar
Scarabelli TM, Stephanou A, Pasini E, Comini L, Raddino R, Knight RA, Latchman DS: Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res 90:745–748, 2002 Google Scholar
Scheubel RJ, Bartling B, Simm A, Silber RE, Drogaris K, Darmer D, Holtz J: Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: Fragile balance of myocyte survival? J Am Coll Cardiol 39:481–488, 2002 Google Scholar
Adams JM, Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 281:1322–1326, 1998 Google Scholar
Chao DT, Korsmeyer SJ: BCL-2 family: Regulators of cell death Annu Rev Immunol 16:395–419, 1998 Google Scholar
Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291, 1995 Google Scholar
Gajewski TF, Thompson CB: Apoptosis meets signal transduction: Elimination of a BAD influence Cell 87:589–592, 1996 Google Scholar
Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM: Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968, 1997 Google Scholar
Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501, 1998 Google Scholar
Luo X, Budihardjo I, Zou H, Slaughter C, Wang, X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490, 1998 Google Scholar
Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377, 2000 Google Scholar
Zha J, Harada H, Yang E, Jocket J, Korsmeyer SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14—3—3 not BCL-X(L). Cell 87:619–628, 1996 Google Scholar
Wang HG, Pathan N, Ethell JM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed, JC: Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343, 1999 Google Scholar
Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH Krajewski S, Reed JC, Olivetti G, Anversa, P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107, 1996 Google Scholar
Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H: Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512, 1996 Google Scholar
Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de Rienzo A, Roncarati R, Trimarco B, Lembo G: Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99:3071–3078, 1999 Google Scholar
Latif N, Khan MA, Birks E, O'Farrell A, Westbrook J, Dunn MJ, Yacoub MH: Upregulation of the Bcl-2 family of proteins in end-stage heart failure. J Am Coll Cardiol 35:1769–1777, 2000 Google Scholar
Jung F, Weiland U, Johns RA, Ihling C, Dimmeler S: Chronic hypoxia induces apoptosis in cardiac myocytes: A possible role for Bcl-2—like proteins. Biochem Biophys Res Commun 286:419–425, 2001 Google Scholar
Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa, P: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local reninangiotensin system and decreases the Bcl-2—to-Bax protein ratio in the cell. J Clin Invest 101:1326–1342, 1998 Google Scholar
Fortuno MA, Ravassa S, Etayo JC, Diez J: Overexpression of Bax protein and enhanced apoptosis in the left ventricle of spontaneously hypertensive rats: Effects of AT1 blockade with losartan. Hypertension 32:280–286, 1998 Google Scholar
Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH: Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 84:21–33, 1999 Google Scholar
Liu L, Azhar G, Gao W, Zhang X, Wei JY: Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: Age-associated differences. Am J Physiol 275:R315-R322, 1998 Google Scholar
Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH: Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:H2313-H2320, 2001 Google Scholar
Chatterjee S, Stewart AS, Bish LT, Jayasankar V, Kim EM, Pirolli T, Burdick J, Woo YJ, Gardner TJ, Sweeney, HL: Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:1212–1217, 2002 Google Scholar
Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y: Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8:367–376, 2001 Google Scholar
Regula KM, Ens K, Kirshenbaum LA: Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91:226–231, 2002 Google Scholar
Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, Aronow BJ, Lorenz JN, Dorn GW: Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8:725–730, 2002 Google Scholar
Troy CM, Salvesen GS: Caspases on the brain. J Neurosci Res 69:145–150, 2002 Google Scholar
Cohen GM: Caspases: the executioners of apoptosis. Biochem J 326(Pt1):1–16, 1997 Google Scholar
Yue TL, Wang C, Romanic AM, Kikly K, Keller P, DeWolf WE, Jr, Hart TK, Thomas HC, Storer B, Gu JL, Xang X, and Feuerstein GZ: Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. J Mol Cell Cardiol 30:495–507, 1998 Google Scholar
Yaoita H, Ogawa K, Maehara K, Maruyama Y: Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281, 1998 Google Scholar
Mocanu MM, Baxter GF, Yellon DM: Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br J Pharmacol 130:197–200, 2000 Google Scholar
Vanden Hoek TL, Qin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, Becker LB, Hamann KJ: Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes. Am J Physiol Heart Circ Physiol 284:H141-H150, 2003 Google Scholar
Gottlieb RA, Gruol DL, Zhu JY, Engler RL: Preconditioning rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 97:2391–2398, 1996 Google Scholar
Li HL, Karwatowska-Prokopezuk E, Mutomba M, Wu J, Karanewsky D, Valentino K, Engler RL, Gottlieb RA: Pharmacology of caspase inhibitors in rabbit cardiomyocytes subjected to metabolic inhibition and recovery. Antioxid Redox Signal 3:113–123, 2001 Google Scholar
Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL: Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715, 1999 Google Scholar
Condorelli G, Roncarati R, Ross J, Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, and Croce CM: Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982, 2001 Google Scholar
Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman, DS: Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ 8:434–435, 2001 Google Scholar
Laugwitz KL, Moretti A, Weig HJ, Gillitzer A, Pinkernell K, Ott T, Pragst I, Stadele C, Seyfarth M, Schomig A, and Ungerer M: Blocking caspaseactivated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051–2063, 2001 Google Scholar
Moretti A, Weig HJ, Ott T, Seyfarth M, Holthoff HP, Grewe D, Gillitzer A, Bott-Flugel L, Schomig A, Ungerer M, and Laugwitz KL: Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc Natl Acad Sci USA 99:11860–11865, 2002 Google Scholar
Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ: Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256, 2002 Google Scholar
Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL, Tawa P, Xanthoudakis S, Nasir J, Martindale D, Koop BF, Peterson EP, Jhornberry NA, Hayden MR, Roy S, and Nicholson DX: Cell death attenuation by “Usurpin,” a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex Cell Death Differ 5:271–288, 1998 Google Scholar
Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C: Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195, 1997 Google Scholar
Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike, H: Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility toFas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128, 2003 Google Scholar
Koseki T, Inohara N, Chen S, Nunez G: ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95:5156–5160, 1998 Google Scholar
Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT: The apoptotic regulatory protein ARC (apoptosis represser with caspase recruitment domain) prevents oxidantstress-mediated cell death by preserving mitochondrial function. J Biol Chem 276:33915–33922, 2001 Google Scholar
Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA: TAT protein transduction into isolated perfused hearts: TAT-apoptosis represser with caspase recruitment domain is cardioprotective. Circulation 106:735–739, 2002 Google Scholar
Fleury C, Mignotte B, Vayssiere JL: Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141, 2002 Google Scholar
Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA: Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 284:C562-C570, 2003 Google Scholar
Zweier JL, Flaherty JT, Weisfeldt ML: Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407, 1987 Google Scholar
Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB: Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583, 1997 Google Scholar
Oskarsson HJ, Coppey L, Weiss RM, Li WG: Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc Res 45:679–687, 2000 Google Scholar
Maulik N, Yoshida T, Das DK: Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 196:13–21, 1999 Google Scholar
Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH: Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281–2289, 1998 Google Scholar
Yoshida T, Maulik N, Engelman RM, Ho YS, Das DK: Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 86:264–269, 2000 Google Scholar
Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J: Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409, 2002 Google Scholar
Rabkin SW, Kong JY: Nifedipine does not induce but rather prevents apoptosis in cardiomyocytes. Eur J Pharmacol 388:209–217, 2000 Google Scholar
Communal C, Singh K, Pimentel DR, Colucci WS: Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334, 1998 Google Scholar
Henaff M, Antoine S, Mercadier JJ, Coulombe A, Hatem SN: The voltage-independent B-type Ca2+ channel modulates apoptosis of cardiac myocytes. FASEB J 16:99–101, 2002 Google Scholar
Miyamae M, Camacho SA, Weiner MW, Figueredo VM: Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+m overload in rat hearts. Am J Physiol 271:H2145-H2153, 1996 Google Scholar
Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642, 1998 Google Scholar
Crompton M: The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249, 1999 Google Scholar
Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B: The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165, 1997 Google Scholar
Nazaret W, Yafei N, Crompton M: Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354, 1991 Google Scholar
Griffiths EJ, Halestrap AP: Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469, 1993 Google Scholar
Lacks SA: Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J Biol Chem 256:2644–2648, 1981 Google Scholar
Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald HR, Mannherz HG, Tschopp J: Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 12:371–377, 1993 Google Scholar
Yao M, Keogh A, Spratt P, dos Remedios CG, Kiessling PC: Elevated DNase I levels in human idiopathic dilated cardiomyopathy: An indicator of apoptosis? J Mol Cell Cardiol 28:95–101, 1996 Google Scholar
Nitahara JA, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert SR, Kajstura J, Anversa P: Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol 30:519–535, 1998 Google Scholar
Croall DE, DeMartino GN: Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 71:813–847, 1991 Google Scholar
Yoshida K, Yamasaki Y, Kawashima S: Calpain activity alters in rat myocardial subfractions after ischemia or reperfusion. Biochim Biophys Acta 1182:215–220, 1993 Google Scholar
Toda G, Matsushita S, Kuramoto K, Oda S, Ezaki H, Hattori A, Kawashima S: Calcium-activated neutral protease inhibitor (E-64c) and reperfusion for experimental myocardial infarction. Jpn Heart J 30:375–386, 1989 Google Scholar
Kakkar R, Wang X, Radhi JM, Rajala RV, Wang R, Sharma, RK: Decreased expression of high-molecular-weight calmodulin-binding protein and its correlation with apoptosis in ischemia-reperfused rat heart. Cell Calcium 29:59–71, 2001 Google Scholar
Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M,Kawamura S, Tatsuno H, Ikeda Y, Matsuzaki M: Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 33:580–586, 1999 Google Scholar
Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT: Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43:303–317, 2000 Google Scholar
Jayaraman T, Marks AR: Calcineurin is downstream of the inositol 1, 4, 5—trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem 275:6417–6420, 2000 Google Scholar
Shibasaki F, McKeon F: Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. J Cell Biol 131:735–743, 1995 Google Scholar
Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I: β-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275:34528–34533, 2000 Google Scholar
De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW, Kitsis RN, Molkentir JD: Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 86:255–263, 2000 Google Scholar
Lotem J, Kama R, Sachs L: Suppression or induction of apoptosis by opposing pathways downstream from calcium-activated calcineurin. Proc Natl Acad Sci USA 96:12016–12020, 1999 Google Scholar
Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180, 1999 Google Scholar
Sugden PH, Clerk A: “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352, 1998 Google Scholar
Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, and Molkenth JD: Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677, 2001 Google Scholar
Cook SA, Sugden PH, Clerk, A: Activation of c-Jun N-terminal kinases and p38—mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429–1434, 1999 Google Scholar
Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160, 1994 Google Scholar
Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ: JNK1; A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037, 1994 Google Scholar
Johnson NL, Gardner AM, Diener KM, Lange-Carter CA, Gleavy J, Jarpe MB, Minden A, Karin M, Zon LI, Johnson GL: Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem 271:3229–3237, 1996 Google Scholar
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331, 1995 Google Scholar
Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben Levy R, Ashworth A, Marshall CJ, Sugden, PH: Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79:162–173, 1996 Google Scholar
Knight RJ, Buxton DB: Stimulation of c-Jun kinase and mitogenactivated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218:83–88, 1996 Google Scholar
Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF Hai T, Whelan J: Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950, 1997 Google Scholar
He H, Li HL, Lin A, Gottlieb RA: Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ 6:987–991, 1999 Google Scholar
Yue TL, Ma XL, Gu JL, Ruffolo RR, Jr, Feuerstein GZ: Carvedilol inhibits activation of stress-activated protein kinase and reduces reperfusion injury in perfused rabbit heart. Eur J Pharmacol 345:61–65, 1998 Google Scholar
Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA: Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571, 2002 Google Scholar
Wang Y, Huang S, Sah VP, Ross J, Jr, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168, 1998 Google Scholar
Mackay K, Mochly-Rosen D: An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 274:6272–6279, 1999 Google Scholar
Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, and Komuro I: MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100:2100–2107, 1999 Google Scholar
Adam JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW: Enhanced Galphaq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145, 1998 Google Scholar
Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR: Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 272:5783–5791, 1997 Google Scholar
Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein, EH: Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699, 2000 Google Scholar
Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH: Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699, 2000 Google Scholar
Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR,Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, and Molkentin JD: The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350, 2000 Google Scholar
Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M,Shiojima I, Hiroi Y, Yazaki Y: Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100:1813–1821, 1997 Google Scholar