Amyloid Formation by Mutant Huntingtin: Threshold, Progressivity and Recruitment of Normal Polyglutamine Proteins (original) (raw)

LITERATURE CITED

  1. Gusella, J.F., Persichetti, F., and MacDonald, M.E. (1997). The genetic defect causing Huntington's disease: repeated in other contexts? Mol. Med. **3:**238–246.
    PubMed Google Scholar
  2. Holmberg, M., Duyckaerts, C., Durr, A., Cancel, G., Gourfinkel-An, I., Damier, P., Faucheux, B., Trottier, Y., Hirsch, E.C., Agid, Y., and Brice, A. (1998). Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. **7:**913–918.
    PubMed Google Scholar
  3. Ross, C.A. (1997). Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron **19:**1147–1150.
    PubMed Google Scholar
  4. Huntington's Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell **72:**971–983.
    Google Scholar
  5. Duyao, M.P., Auerbach, A.B., Ryan, A., Persichetti, F., Barnes, G.T., McNeil, S.M., Ge, P., Vonsattel, J.P., Gusella, J.F., Joyner, A.L., and MacDonald, ME. (1995). Inactivation of the mouse Huntington's disease gene homolog Hdh. Science **269:**407–410.
    PubMed Google Scholar
  6. Zeitlin, S., Liu, J.P., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. (1995). Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat. Genet. **11:**155–163.
    PubMed Google Scholar
  7. Nasir, J., Floresco, S.B., JR, O.K., Diewert, V.M., Richman, J.M., Zeisler, J., Borowski, A., Marth, J.D., Phillips, A.G., and Hayden, M.R. (1995). Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell **81:**811–823.
    Article PubMed Google Scholar
  8. White, J.K., Auerbach, W., Duyao, M.P., Vonsattel, J.P., Gusella, J.F., Joyner, A.L., and MacDonald, M.E. (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat. Genet. **17:**404–410.
    PubMed Google Scholar
  9. Vonsattel, J.P., and DiFiglia, M. (1998). Huntington disease. J. Neuropathol. Exp. Neurol. **57:**369–384.
    PubMed Google Scholar
  10. McNeil, S.M., Novelletto, A., Srinidhi, J., Barnes, G., Kornbluth, I., Altherr, M.R., Wasmuth, J.J., Gusella, J.F., MacDonald, M.E., and Myers, R.H. (1997). Reduced penetrance of the Huntington's disease mutation. Hum. Mol. Genet. **6:**775–779.
    PubMed Google Scholar
  11. Rubinsztein, D.C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J.J., Chotai, K., Connarty, M., Crauford, D., Curtis, A., Curtis, D., Davidson, M.J., Differ, A.M., Dode, C., Dodge, A., Frontali, M., Ranen, N.G., Stine, O.C., Sherr, M., Abbott, M.H., Franz, M.L., Graham, C.A., Harper, P.S., Hedreen, J.C., Jackson, A., Kaplan, J.C., Losekoot, M., MacMillan, J.C., Morrison, P., Trottier, Y., Novelletto, A., Simpson, S.A., Theilmann, J., Whittaker, J.L., Folstein, S.E., Ross, C.A., and Hayden, M.R. (1996). Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am. J. Hum. Genet. **59:**16–22.
    PubMed Google Scholar
  12. MacDonald, M.E., Barnes, G., Srinidhi, J., Duyao, M.P., Ambrose, C.M., Myers, R.H., Gray, J., Conneally, P.M., Young, A., Penney, J., Shoulson, I., Hollingsworth, Z., Koroshetz, W., Bird, E., Vonsattel, J.P., Bonilla, E., Moskowitz, C., Penchaszadeh, G., Brzustowicz, L., Alvir, J., Bickhem Conde, J., Cha, J-H., Dure, L., Gomez, F., Ramos-Arroyo, M., Sanchez-Ramos, J., Snodgrass, S.R., de Young, M., Waxler, N.S., MacFarlane, H., Anderson, M.A., Jenkins, B., and Gusella, J.F. (1993). Gametic but not somatic instability of CAG repeat length in Huntington's disease. J. Med. Genet. **30:**982–986.
    PubMed Google Scholar
  13. Cummings, C.J., Mancini, M.A., Antalffy, B., DeFranco, D.B., Orr, H.T., and Zoghbi, H.Y. (1998). Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. **19:**148–154.
    PubMed Google Scholar
  14. Davies, S.W., Turmaine, M., Cozens, B.A., DiFiglia, M., Sharp, A.H., Ross, C.A., Scherzinger, E., Wanker, E.E., Mangiarini, L., and Bates, G.P. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell **90:**537–548.
    PubMed Google Scholar
  15. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., and Aronin, N. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science **277:**1990–1993.
    PubMed Google Scholar
  16. Merry, D.E., Kobayashi, Y., Bailey, C.K., Taye, A.A., and Fischbeck, K.H. (1998). Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum. Mol. Genet. **7:**693–701.
    PubMed Google Scholar
  17. Ordway, J.M., Tallaksen-Greene, S., Gutekunst, C.A., Bernstein, E.M., Cearley, J.A., Wiener, H.W., Dure, L.S.T., Lindsey, R., Hersch, S.M., Jope, R.S., Albin, R.L., and Detloff, P.J. (1997). Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell **91:**753–763.
    PubMed Google Scholar
  18. Paulson, H.L., Perez, M.K., Trottier, Y., Trojanowski, J.Q., Subramony, S.H., Das, S.S., Vig, P., Mandel, J.L., Fischbeck, K.H., and Pittman, R.N. (1997). Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron **19:**333–344.
    Article PubMed Google Scholar
  19. Perutz, M.F., Johnson, T., Suzuki, M., and Finch, J.T. (1994). Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. U.S.A. **91:**5355–5358.
    PubMed Google Scholar
  20. Green, H. (1993). Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell **74:**955–956.
    Article PubMed Google Scholar
  21. Cooper, A.J.L., Sheu, K.R., Burke, J.R., Onodera, O., Strittmatter, W.J., Roses, A.D., and Blass, J.P. (1997). Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and alpha-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length. Proc. Natl. Acad. Sci. U.S.A. **94:**12604–12609.
    PubMed Google Scholar
  22. Cooper, A.J., Sheu, K.F., Burke, J.R., Onodera, O., Strittmatter, W.J., Roses, A.D. and Blass, J.P. (1997). Polyglutamine domains are substrates of tissue transglutaminase: does transglutaminase play a role in expanded CAG/poly-Q neurodegenerative diseases? J. Neurochem. **69:**431–434.
    PubMed Google Scholar
  23. Gentile, V., Sepe, C., Calvani, M., Melone, M.A., Cotrufo, R., Cooper, A.J., Blass, J.P., and Peluso, G. (1998). Tissue transglutaminase-catalyzed formation of high-molecular-weight aggregates in vitro is favored with long polyglutamine domains: a possible mechanism contributing to CAG-triplet diseases. Arch. Biochem. Biophys. **352:**314–321.
    PubMed Google Scholar
  24. Kahlem, P., Terre, C., Green, H., and Djian, P. (1996). Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc. Natl. Acad. Sci. U.S.A. **93:**14580–14585.
    PubMed Google Scholar
  25. Kahlem, P., Green, H., and Djian, P. (1998). Transglutaminase action imitates Huntington's disease: selective polymerization of Huntingtin containing expanded polyglutamine. Mol. Cell **1:**595–601.
    PubMed Google Scholar
  26. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., and Wanker, E.E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell **90:**549–558.
    PubMed Google Scholar
  27. Huang, C.C., and Herr, W. (1996). Differential control of transcription by homologous homeodomain coregulators. Mol. Cell. Biol. **16:**2967–2976.
    PubMed Google Scholar
  28. Mittal, V., and Hernandez, N. (1997). Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science **275:**1136–1140.
    PubMed Google Scholar
  29. Schende, P.F. (1992). Protein expression. In: Current Protocols in Molecular Biology, Eds: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (New York: John Wiley and Sons).
    Google Scholar
  30. Lobo, S., Ruppert, S.M., McCulloch, V., Meyer, M., Bautista, C., Falkowski, M., Stunnenberg, H.G., and Hernandez, N. (1996). Monoclonal antibodiesdirected against the amino-terminal domain of human TBP cross-react with TBP from other species. Hybridoma **15:**55–68.
    PubMed Google Scholar
  31. Aronin, N., Chase, K., Sagar, S.M., Sharp, F.R., and DiFiglia, M. (1991). N-methyl-D-aspartate receptor activation in the neostriatum increases c-fos and fos-related antigens selectively in medium-sized neurons. Neuroscience **44:**409–420.
    PubMed Google Scholar
  32. Turnell, W.G., and Finch, J.T. (1992). Binding of the dye congo red to the amyloid protein pig insulin reveals a novel homology amongst amyloid-forming peptide sequences. J. Mol. Biol. **227:**1205–1223.
    PubMed Google Scholar
  33. Gusella, J.F., McNeil, S., Persichetti, F., Srinidhi, J., Novelletto, A., Bird, E., Faber, P., Vonsattel, J.P., Myers, R.H., and MacDonald, M.E. (1996). Huntington's Disease. Cold Spring Harbor Symposia on Quantitative Biology **LXI:**615–625.
    Google Scholar
  34. Myers, R.H., Leavitt, J., Farrer, L.A., Jagadeesh, J., McFarlane, H., Mastromauro, C.A., Mark, R.J., and Gusella, J.F. (1989). Homozygote for Huntington disease. Am. J. Hum. Genet. **45:**615–618.
    PubMed Google Scholar
  35. Wexler, N.S., Young, A.B., Tanzi, R.E., Travers, H., Starosta-Rubinstein, S., Penney, J.B., Snodgrass, S.R., Shoulson, I., Gomez, F., Ramos Arroyo, M.A., and et al. (1987). Homozygotes for Huntington's disease. Nature **326:**194–197.
    PubMed Google Scholar
  36. Trottier, Y., Lutz, Y., Stevanin, G., Imbert, G., Devys, D., Cancel, G., Saudou, F., Weber, C., David, G., Tora, L., Agid, Y., Hirsch, E.C., and Mandel, J-L. (1995). Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature **378:**403–406.
    PubMed Google Scholar
  37. Persichetti, F., Ambrose, C.M., Ge, P., McNeil, S.M., Srinidhi, J., Anderson, M.A., Jenkins, B., Barnes, G.T., Duyao, M.P., Kanaley, L., Waxler, N.S., Myers, R.H., Bird, E.D., Vonsattel, J.P., MacDonald, M.E., and Gusella, J.F. (1995). Normal and expanded Huntington's disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol. Med. **1:**374–383.
    PubMed Google Scholar
  38. Persichetti, F., Carlee, L., Faber, P.W., McNeil, S.M., Ambrose, C.M., Srinidhi, J., Anderson, M., Barnes, G.T., Gusella, J.F., and MacDonald, M.E. (1996). Differential expression of normal and mutant Huntington's disease gene alleles. Neurobiol. Dis. **3:**183–190.
    PubMed Google Scholar
  39. Klement, I.A., Skinner, P.J., Kaytor, M.D., Yi, H., Hersch, S.M., Clark, H.B., Zoghbi, H.Y., and Orr, H.T. (1998). Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell **95:**41–53.
    PubMed Google Scholar
  40. Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen, D.E., and Hayden, M.R. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. **273:**9158–9167.
    PubMed Google Scholar
  41. Cooper, J.K., Schilling, G., Peters, M.F., Herring, W.J., Sharp, A.H., Kaminsky, Z., Masone, J., Khan, F.A., Delanoy, M., Borchelt, D.R., Dawson, V.L., Dawson, T.M., and Ross, C.A. (1998). Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet. **7:**783–790.
    PubMed Google Scholar
  42. Hackam, A.S., Singaraja, R., Wellington, C.L., Metzler, M., McCutcheon, K., Zhang, T., Kalchman, M., and Hayden, M.R. (1998). The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell Biol. **141:**1097–1105.
    PubMed Google Scholar
  43. Li, S.H., and Li, X.J. (1998). Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum. Mol. Genet. **7:**777–782.
    PubMed Google Scholar
  44. Liu, Y.F. (1998). Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J. Biol. Chem. **273:**28873–28877.
    PubMed Google Scholar
  45. Lunkes, A., and Mandel, J.L. (1998). A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum. Mol. Genet. **7:**1355–1361.
    PubMed Google Scholar
  46. Martindale, D., Hackam, A., Wieczorek, A., Ellerby, L., Wellington, C., McCutcheon, K., Singaraja, R., Kazemi-Esfarjani, P., Devon, R., Kim, S.U., Bredesen, D.E., Tufaro, F., and Hayden, M.R. (1998). Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet. **18:**150–154.
    PubMed Google Scholar
  47. Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M.E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell **95:**55–66.
    PubMed Google Scholar
  48. Dragatsis, I., Efstratiadis, A., and Zeitlin, A. (1998). Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development **125:**1529–1539.
    PubMed Google Scholar
  49. Gusella, J.F., and MacDonald, M.E. (1998). Huntingtin: A single bait hooks many species. Curr. Opin. Neurobiol. **8:**425–430.
    PubMed Google Scholar

Download references