Spatial control of actin polymerization during neutrophil chemotaxis (original) (raw)

References

  1. Cano, M. L., Lauffenburger, D. A. & Zigmond, S. H. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution. J. Cell Biol. 115, 677–687 (1991).
    Article CAS PubMed Google Scholar
  2. Zigmond, S. H. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature 249, 450–452 ( 1974).
    Article CAS PubMed Google Scholar
  3. Zigmond, S. H. & Hirsch, J. G. Effects of cytochalasin B on polymorphonuclear leucocyte locomotion, phagocytosis and glycolysis. Exp. Cell Res. 73, 383–393 ( 1972).
    Article CAS PubMed Google Scholar
  4. Watts, R. G., Crispens, M. A. & Howard, T. H. A quantitative study of the role of F-actin in producing neutrophil shape. Cell. Motil. Cytoskeleton 19, 159–168 (1991).
    Article CAS PubMed Google Scholar
  5. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  6. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science. 281, 105– 108 (1998).
    Article CAS PubMed Google Scholar
  7. Ma, L., Rohatgi, R. & Kirschner, M. W. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc. Natl Acad. Sci. USA 95, 15362–15367 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  8. McCollum, D., Feoktistova, A., Morphew, M., Balasubramanian, M. & Gould, K. L. The Schizosaccharomyces pombe actin-related protein, Arp3, is a component of the cortical actin cytoskeleton and interacts with profilin. EMBO J. 15 , 6438–6446 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  9. Moreau, V., Madania, A., Martin, R. P. & Winson, B. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton. J. Cell Biol. 134, 117–132 (1996).
    Article CAS PubMed Google Scholar
  10. Winter, D., Podtelejnikov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol. 7, 519–529 (1997).
    Article CAS PubMed Google Scholar
  11. Okabe, S. & Hirokawa, N. Actin dynamics in growth cones . J. Neurosci. 11, 1918– 1929 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  12. Symons, M. H. & Mitchison, T.J. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 114, 503–513 (1991).
    Article CAS PubMed Google Scholar
  13. Chan, A. Y. et al. EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells . J .Cell Sci. 111, 199– 211 (1998).
    CAS PubMed Google Scholar
  14. Redmond, T. & Zigmond, S. H. Distribution of F-actin elongation sites in lysed polymorphonuclear leukocytes parallels the distribution of endogenous F-actin. Cell. Motil. Cytoskeleton 26, 7–18 (1993).
    Article CAS PubMed Google Scholar
  15. Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375– 384 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  16. Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immun. 60, 3609 –3619 (1992).
    CAS PubMed PubMed Central Google Scholar
  17. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357, 257–260 (1992).
    Article CAS PubMed Google Scholar
  18. Amrein, P. C. & Stossel, T. P. Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylfluorophosphate. Blood 56, 442–447 ( 1980).
    CAS PubMed Google Scholar
  19. Machesky, L. M. et al. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins . Biochem. J. 328, 105– 112 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  20. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127 , 107–115 (1994).
    Article CAS PubMed Google Scholar
  21. Kelleher, J. F., Atkinson, S. J. & Pollard, T.D. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 131, 385–397 (1995).
    Article CAS PubMed Google Scholar
  22. Mullins, R. D., Kelleher, J. F., Xu, J. & Pollard, T. D. Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments. Mol. Biol.Cell. 9, 841–852 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  23. Schafer, D. A. et al. Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol. 143, 1919– 1930 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  24. Zigmond, S. H., Joyce, M., Borleis, J., Bokoch, G. M., & Devreotes, P. N. Regulation of actin polymerization in cell-free systems by GTP-γS and Cdc42. J. Cell Biol. 138, 363–374 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  25. Ma, L., Cantley, L. C., Janmey, P. A., & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J.Cell Biol. 140, 1125–1136 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  26. Mullins, R. D. & Pollard, T. D. Rho-family G-proteins act through Arp2/3 complex to stimulate actin polymerization in Acanthamoeba extracts. Curr. Biol. (in the press).
  27. Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA 87, 6068–6072 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  28. Tilney, L. G. & Tilney, M. S. The wily ways of a parasite: induction of actin assembly by Listeria. Trends Microbiol. 1, 25–31 (1993).
    Article CAS PubMed Google Scholar
  29. Sechi, A. S., Wehland, J. & Small, J. V. The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J. Cell Biol. 137, 155–167 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  30. Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol. 130, 331–343 (1995).
    Article CAS PubMed Google Scholar
  31. Cassimeris, L., McNeill, H. & Zigmond, S. H. Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J. Cell Biol. 110, 1067–1075 (1990).
  32. Gerisch, G. & Keller, H. U. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J. Cell Sci. 52, 1–10 ( 1981).
    CAS PubMed Google Scholar
  33. Pardee, J. D. & Spudich, J. A. Purification of muscle actin . Methods Enzymol. 85B, 164– 181 (1982).
    Article Google Scholar
  34. Kellogg, D. R., Mitchison, T. J. & Alberts, B. M. Behaviour of microtubules and actin filaments in living Drosophila embryos. Development 103, 675–686 (1988).
    CAS PubMed Google Scholar
  35. Small, J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks . J. Cell Biol. 91, 695– 705 (1981).
    Article CAS PubMed Google Scholar
  36. Tucker, K. A., Lilly, M. B., Heck, L. Jr & Rado, T. A. Characterization of a new human diploid myeloid leukemia cell line (PLB- 985) with granulocytic and monocytic differentiating capacity. Blood 70, 372–378 (1987).
    CAS PubMed Google Scholar
  37. Miller, A. D. & Rosman, G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–982, 984–986, 989–990 ( 1989).
    Google Scholar
  38. Servant, G., Weiner, O. D., Neptune, E., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell. 10, 1163–1178 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  39. Hiraoka, Y., Swedlow, J. R., Paddy, M. R., Agard, D. A. & Sedat, J. W. Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena . Semin. Cell Biol. 2, 153– 165 (1991).
    CAS PubMed Google Scholar
  40. Agard, D. A., Hiraoka, Y., Shaw, P. & Sedat, J. W. Fluorescence microscopy in three dimensions. Methods Cell Biol. 30, 353–377 (1989).
    Article CAS PubMed Google Scholar
  41. Swedlow, J. R., Sedat, J. W. & Agard, D. A. in in Deconvolution of Images and Spectra (ed. Jansson, P. A.) 284–307 (Academic, San Diego, 1997).
    Google Scholar
  42. Chen, H., Hughes, D. D., Chan, T. A., Sedat, J. W. & Agard, D. A. IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J. Struct. Biol. 116, 56–60 (1996).
    Article CAS PubMed Google Scholar

Download references