Spatial control of actin polymerization during neutrophil chemotaxis (original) (raw)
References
Cano, M. L., Lauffenburger, D. A. & Zigmond, S. H. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution. J. Cell Biol.115, 677–687 (1991). ArticleCASPubMed Google Scholar
Zigmond, S. H. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature249, 450–452 ( 1974). ArticleCASPubMed Google Scholar
Zigmond, S. H. & Hirsch, J. G. Effects of cytochalasin B on polymorphonuclear leucocyte locomotion, phagocytosis and glycolysis. Exp. Cell Res.73, 383–393 ( 1972). ArticleCASPubMed Google Scholar
Watts, R. G., Crispens, M. A. & Howard, T. H. A quantitative study of the role of F-actin in producing neutrophil shape. Cell. Motil. Cytoskeleton19, 159–168 (1991). ArticleCASPubMed Google Scholar
Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA95, 6181–6186 (1998). ArticleCASPubMedPubMed Central Google Scholar
Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science.281, 105– 108 (1998). ArticleCASPubMed Google Scholar
Ma, L., Rohatgi, R. & Kirschner, M. W. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc. Natl Acad. Sci. USA95, 15362–15367 (1998). ArticleCASPubMedPubMed Central Google Scholar
McCollum, D., Feoktistova, A., Morphew, M., Balasubramanian, M. & Gould, K. L. The Schizosaccharomyces pombe actin-related protein, Arp3, is a component of the cortical actin cytoskeleton and interacts with profilin. EMBO J.15 , 6438–6446 (1996). ArticleCASPubMedPubMed Central Google Scholar
Moreau, V., Madania, A., Martin, R. P. & Winson, B. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton. J. Cell Biol.134, 117–132 (1996). ArticleCASPubMed Google Scholar
Winter, D., Podtelejnikov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol.7, 519–529 (1997). ArticleCASPubMed Google Scholar
Symons, M. H. & Mitchison, T.J. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol.114, 503–513 (1991). ArticleCASPubMed Google Scholar
Chan, A. Y. et al. EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells . J .Cell Sci.111, 199– 211 (1998). CASPubMed Google Scholar
Redmond, T. & Zigmond, S. H. Distribution of F-actin elongation sites in lysed polymorphonuclear leukocytes parallels the distribution of endogenous F-actin. Cell. Motil. Cytoskeleton26, 7–18 (1993). ArticleCASPubMed Google Scholar
Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol.138, 375– 384 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immun.60, 3609 –3619 (1992). CASPubMedPubMed Central Google Scholar
Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature.357, 257–260 (1992). ArticleCASPubMed Google Scholar
Amrein, P. C. & Stossel, T. P. Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylfluorophosphate. Blood56, 442–447 ( 1980). CASPubMed Google Scholar
Machesky, L. M. et al. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins . Biochem. J.328, 105– 112 (1997). ArticleCASPubMedPubMed Central Google Scholar
Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol.127 , 107–115 (1994). ArticleCASPubMed Google Scholar
Kelleher, J. F., Atkinson, S. J. & Pollard, T.D. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol.131, 385–397 (1995). ArticleCASPubMed Google Scholar
Mullins, R. D., Kelleher, J. F., Xu, J. & Pollard, T. D. Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments. Mol. Biol.Cell.9, 841–852 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zigmond, S. H., Joyce, M., Borleis, J., Bokoch, G. M., & Devreotes, P. N. Regulation of actin polymerization in cell-free systems by GTP-γS and Cdc42. J. Cell Biol.138, 363–374 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ma, L., Cantley, L. C., Janmey, P. A., & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J.Cell Biol.140, 1125–1136 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mullins, R. D. & Pollard, T. D. Rho-family G-proteins act through Arp2/3 complex to stimulate actin polymerization in Acanthamoeba extracts. Curr. Biol. (in the press).
Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA87, 6068–6072 (1990). ArticleCASPubMedPubMed Central Google Scholar
Tilney, L. G. & Tilney, M. S. The wily ways of a parasite: induction of actin assembly by Listeria. Trends Microbiol.1, 25–31 (1993). ArticleCASPubMed Google Scholar
Sechi, A. S., Wehland, J. & Small, J. V. The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J. Cell Biol.137, 155–167 (1997). ArticleCASPubMedPubMed Central Google Scholar
Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol.130, 331–343 (1995). ArticleCASPubMed Google Scholar
Cassimeris, L., McNeill, H. & Zigmond, S. H. Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J. Cell Biol.110, 1067–1075 (1990).
Gerisch, G. & Keller, H. U. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J. Cell Sci.52, 1–10 ( 1981). CASPubMed Google Scholar
Pardee, J. D. & Spudich, J. A. Purification of muscle actin . Methods Enzymol.85B, 164– 181 (1982). Article Google Scholar
Kellogg, D. R., Mitchison, T. J. & Alberts, B. M. Behaviour of microtubules and actin filaments in living Drosophila embryos. Development103, 675–686 (1988). CASPubMed Google Scholar
Small, J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks . J. Cell Biol.91, 695– 705 (1981). ArticleCASPubMed Google Scholar
Tucker, K. A., Lilly, M. B., Heck, L. Jr & Rado, T. A. Characterization of a new human diploid myeloid leukemia cell line (PLB- 985) with granulocytic and monocytic differentiating capacity. Blood70, 372–378 (1987). CASPubMed Google Scholar
Miller, A. D. & Rosman, G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques7, 980–982, 984–986, 989–990 ( 1989). Google Scholar
Servant, G., Weiner, O. D., Neptune, E., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell.10, 1163–1178 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Hiraoka, Y., Swedlow, J. R., Paddy, M. R., Agard, D. A. & Sedat, J. W. Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena . Semin. Cell Biol.2, 153– 165 (1991). CASPubMed Google Scholar
Agard, D. A., Hiraoka, Y., Shaw, P. & Sedat, J. W. Fluorescence microscopy in three dimensions. Methods Cell Biol.30, 353–377 (1989). ArticleCASPubMed Google Scholar
Swedlow, J. R., Sedat, J. W. & Agard, D. A. in in Deconvolution of Images and Spectra (ed. Jansson, P. A.) 284–307 (Academic, San Diego, 1997). Google Scholar
Chen, H., Hughes, D. D., Chan, T. A., Sedat, J. W. & Agard, D. A. IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J. Struct. Biol.116, 56–60 (1996). ArticleCASPubMed Google Scholar