Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis (original) (raw)
References
Dietrich, C.P., Nader, H.B. & Strauss, A.J. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem. Biophys. Res. Comm.111, 865–871 (1983). ArticleCAS Google Scholar
Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem.60, 443– 475 (1991). ArticleCAS Google Scholar
Nakajima, M., Irimura, T., Di Ferrante, N. & Nicolson, G. L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J. Biol. Chem.259, 2283–2290 (1984). CASPubMed Google Scholar
Oosta, G. M., Favreau, L. V., Beeler, D. L. & Rosenberg, R. D. Purification and properties of human platelet heparitinase. J. Biol. Chem.257, 11249–11255 (1982). CASPubMed Google Scholar
Hoogewerf, A. J. et al. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J. Biol. Chem.270, 3268– 3277 (1995). ArticleCAS Google Scholar
Freeman, C. & Parish, C. R. Human platelet heparanase: purification, characterization and catalytic activity. Biochem. J.330, 1341–1350 (1998). ArticleCAS Google Scholar
Matzner, Y. et al. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role ininvasion through basement membranes. J. Clin. Invest.76, 1306–1313 (1985). ArticleCAS Google Scholar
Sewell, R. F., Brenchley, P. E. G. & Mallick, N. P. Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. Biochem. J.264, 777–783 (1989). ArticleCAS Google Scholar
Naparstek, Y., Cohen, I. R., Fuks, Z. & Vlodavsky, I. Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature310, 241–243 (1984). ArticleCAS Google Scholar
Bartlett, M. R., Underwood, P. A. & Parish, C. R. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase. Immunol. Cell Biol.73, 113–124 (1995). ArticleCAS Google Scholar
Godder, K. et al. Heparanase activity in cultured endothelial cells. J. Cell. Physiol.148, 274–280 (1991). ArticleCAS Google Scholar
Freeman, C. & Parish, C.R. A rapid quantitative assay for the detection of mammalian heparanase activity. Biochem. J.325, 229–237 (1997). ArticleCAS Google Scholar
Yurchenco, P.D. & Schittny, J.C. Molecular architecture of basement membranes. FASEB J.4, 1577– 1590 (1990). ArticleCAS Google Scholar
Vlodavsky, I. et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis12, 112– 127 (1992). CASPubMed Google Scholar
Bar-Ner, M., Mayer, M., Schirrmacher, V. & Vlodavsky, I. Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the the subendothelial extracellular matrix. J. Cell Biol.128, 299– 306 (1986). CAS Google Scholar
Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N. & Nicolson, G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science220, 611– 613 (1983). ArticleCAS Google Scholar
Taipale, J. & Keski-Oji, J. Growth factors in the extracellular matrix FASEB. J.11, 51– 59 (1997). ArticleCAS Google Scholar
Ishai-Michaeli, R., Eldor, A. & Vlodavsky, I. Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul.1, 833– 842 (1990). ArticleCAS Google Scholar
Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science252, 1705–1708 (1991). ArticleCAS Google Scholar
Campbell, J. H., Rennick, R. E., Kalevitch, S. G. & Campbell, G. R. Heparan sulfate-degrading enzymes induce modulation of smooth muscle phenotype. Exp. Cell Res.200, 156– 167 (1992). ArticleCAS Google Scholar
Goshen, R. et al. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Mol. Hum. Reprod.2, 679–684 (1996). ArticleCAS Google Scholar
Pikas, D. S., Li, J. P., Vlodavsky, I. & Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem.273, 18770–18777 (1998). ArticleCAS Google Scholar
De Vouge, M.W. et al. Immunoselection of grp94/endoplasmin from a KNRK cell-specific lgt11 library using antibodies directed against a putative heparanase amino-terminal peptide. Int. J. Cancer56, 286– 294 (1994). ArticleCAS Google Scholar
Graham, L. Tumor rejection antigens of the hsp90 family (gp96) closely resemble tumor-associated heparanase enzymes. Biochem J.301, 917– 918 (1994). ArticleCAS Google Scholar
Rechter, M. et al. A cellulose-binding domain fused recombinant human T cell connective tissue activating peptide-III manifests heparanase activity. Biochem. Biophys. Res. Comm.255, 657– 662 (1999). ArticleCAS Google Scholar
Gonzalez-Stawinska, G.V., Parker, W., Holzknecht, Z.E., Huber, N. & Platt, J.L. Partial sequence of human platelet heparitinase and evidence of its ability to polymerize. Biochim. Biophys. Acta1429, 431–438 (1999). Article Google Scholar
Laskov, R., Michaeli, R.I., Sharir, H., Yefenof, E. & Vlodavsky, I. Production of heparanase by normal and neoplastic murine B-lymphocytes. Int. J. Cancer47, 92–98 (1991). ArticleCAS Google Scholar
Nakajima, M., Irimura, T. & Nicolson, G. L. Heparanases and tumor metastasis. J. Cell. Biochem.36, 157–167 (1988). ArticleCAS Google Scholar
Ricoveri, W. & Cappelletti, R. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma. Cancer Res.46, 3855–3861 (1986). CASPubMed Google Scholar
Godavarti, R. & Sasisekharan, R. A. Comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum. Biochem. Biophys. Res. Comm.229, 770–770 (1996). ArticleCAS Google Scholar
Desai, U. R., Wang, H-M. & Linhardt, R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch. Biochem. Biophys.306, 461–468 (1993). ArticleCAS Google Scholar
Ernst, S., Langer, R., Cooney, C. L. & Sasisekharan, R. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol.30, 387–444 (1995). ArticleCAS Google Scholar
Parish, C.R. et al. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol. Cell Biol.76, 104–113 (1998). ArticleCAS Google Scholar
Willenborg, D.O. & Parish, C.R. Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J. Immunol.140, 3401– 3405 (1988). CASPubMed Google Scholar
Vlodavsky, I. et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis14, 290– 302 (1994-95).
Hershkoviz, R., Mor, F., Miao, H.Q., Vlodavsky, I. & Lider, O. Differential effects of polysulfated polysaccharide on experimental encephalomyelitis, proliferation of autoimmune T cells, and inhibition of heparanase activity. J. Autoimmun.8, 741–750 (1995). ArticleCAS Google Scholar
Parish, C.R., Freeman, C., Brown, K.J., Francis, D.J. & Cowden, W.B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. submitted. (1999).
Lider, O. et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J. Clin. Invest.83, 752– 756 (1989). ArticleCAS Google Scholar
Hellman, U., Wernstedt, C., Gonez, J. & Heldin, C.H. Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem.224, 451–455 (1995). ArticleCAS Google Scholar
Messer, M., Griffiths, M., Rismiller, P.D. & Shaw, D.C. Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna alpha-lactalbumin. Comp. Biochem. Physiol. B Biochem. Mol. Biol.118, 403– 410 (1997). ArticleCAS Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis T. Molecular cloning. A laboratory manual 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989). Google Scholar
Parish, C.R., Jakobsen, K.B. & Coombe, D.R. A basement-membrane permeability assay which correlates with the metastatic potential of tumor cells. Int. J. Cancer52, 378–383 (1992). ArticleCAS Google Scholar
Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77, 61–68 (1989). ArticleCAS Google Scholar
Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselective procedure. Proc. Natl. Acad. Sci. USA84, 3365– 3369 (1987). ArticleCAS Google Scholar