Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis (original) (raw)

References

  1. Dietrich, C.P., Nader, H.B. & Strauss, A.J. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem. Biophys. Res. Comm. 111, 865–871 (1983).
    Article CAS Google Scholar
  2. Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443– 475 (1991).
    Article CAS Google Scholar
  3. Nakajima, M., Irimura, T., Di Ferrante, N. & Nicolson, G. L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J. Biol. Chem. 259, 2283–2290 (1984).
    CAS PubMed Google Scholar
  4. Oosta, G. M., Favreau, L. V., Beeler, D. L. & Rosenberg, R. D. Purification and properties of human platelet heparitinase. J. Biol. Chem. 257, 11249–11255 (1982).
    CAS PubMed Google Scholar
  5. Hoogewerf, A. J. et al. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J. Biol. Chem. 270, 3268– 3277 (1995).
    Article CAS Google Scholar
  6. Freeman, C. & Parish, C. R. Human platelet heparanase: purification, characterization and catalytic activity. Biochem. J. 330, 1341–1350 (1998).
    Article CAS Google Scholar
  7. Matzner, Y. et al. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role ininvasion through basement membranes. J. Clin. Invest. 76, 1306–1313 (1985).
    Article CAS Google Scholar
  8. Sewell, R. F., Brenchley, P. E. G. & Mallick, N. P. Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. Biochem. J. 264, 777–783 (1989).
    Article CAS Google Scholar
  9. Naparstek, Y., Cohen, I. R., Fuks, Z. & Vlodavsky, I. Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 310, 241–243 (1984).
    Article CAS Google Scholar
  10. Bartlett, M. R., Underwood, P. A. & Parish, C. R. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase. Immunol. Cell Biol. 73, 113–124 (1995).
    Article CAS Google Scholar
  11. Godder, K. et al. Heparanase activity in cultured endothelial cells. J. Cell. Physiol. 148, 274–280 (1991).
    Article CAS Google Scholar
  12. Freeman, C. & Parish, C.R. A rapid quantitative assay for the detection of mammalian heparanase activity. Biochem. J. 325, 229–237 (1997).
    Article CAS Google Scholar
  13. Yurchenco, P.D. & Schittny, J.C. Molecular architecture of basement membranes. FASEB J. 4, 1577– 1590 (1990).
    Article CAS Google Scholar
  14. Vlodavsky, I. et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12, 112– 127 (1992).
    CAS PubMed Google Scholar
  15. Bar-Ner, M., Mayer, M., Schirrmacher, V. & Vlodavsky, I. Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the the subendothelial extracellular matrix. J. Cell Biol. 128, 299– 306 (1986).
    CAS Google Scholar
  16. Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N. & Nicolson, G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220, 611– 613 (1983).
    Article CAS Google Scholar
  17. Taipale, J. & Keski-Oji, J. Growth factors in the extracellular matrix FASEB. J. 11, 51– 59 (1997).
    Article CAS Google Scholar
  18. Ishai-Michaeli, R., Eldor, A. & Vlodavsky, I. Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul. 1, 833– 842 (1990).
    Article CAS Google Scholar
  19. Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).
    Article CAS Google Scholar
  20. Campbell, J. H., Rennick, R. E., Kalevitch, S. G. & Campbell, G. R. Heparan sulfate-degrading enzymes induce modulation of smooth muscle phenotype. Exp. Cell Res. 200, 156– 167 (1992).
    Article CAS Google Scholar
  21. Goshen, R. et al. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Mol. Hum. Reprod. 2, 679–684 (1996).
    Article CAS Google Scholar
  22. Pikas, D. S., Li, J. P., Vlodavsky, I. & Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273, 18770–18777 (1998).
    Article CAS Google Scholar
  23. De Vouge, M.W. et al. Immunoselection of grp94/endoplasmin from a KNRK cell-specific lgt11 library using antibodies directed against a putative heparanase amino-terminal peptide. Int. J. Cancer 56, 286– 294 (1994).
    Article CAS Google Scholar
  24. Graham, L. Tumor rejection antigens of the hsp90 family (gp96) closely resemble tumor-associated heparanase enzymes. Biochem J. 301, 917– 918 (1994).
    Article CAS Google Scholar
  25. Rechter, M. et al. A cellulose-binding domain fused recombinant human T cell connective tissue activating peptide-III manifests heparanase activity. Biochem. Biophys. Res. Comm. 255, 657– 662 (1999).
    Article CAS Google Scholar
  26. Gonzalez-Stawinska, G.V., Parker, W., Holzknecht, Z.E., Huber, N. & Platt, J.L. Partial sequence of human platelet heparitinase and evidence of its ability to polymerize. Biochim. Biophys. Acta 1429, 431–438 (1999).
    Article Google Scholar
  27. Laskov, R., Michaeli, R.I., Sharir, H., Yefenof, E. & Vlodavsky, I. Production of heparanase by normal and neoplastic murine B-lymphocytes. Int. J. Cancer 47, 92–98 (1991).
    Article CAS Google Scholar
  28. Nakajima, M., Irimura, T. & Nicolson, G. L. Heparanases and tumor metastasis. J. Cell. Biochem. 36, 157–167 (1988).
    Article CAS Google Scholar
  29. Ricoveri, W. & Cappelletti, R. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma. Cancer Res. 46, 3855–3861 (1986).
    CAS PubMed Google Scholar
  30. Godavarti, R. & Sasisekharan, R. A. Comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum. Biochem. Biophys. Res. Comm. 229, 770–770 (1996).
    Article CAS Google Scholar
  31. Desai, U. R., Wang, H-M. & Linhardt, R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch. Biochem. Biophys. 306, 461–468 (1993).
    Article CAS Google Scholar
  32. Ernst, S., Langer, R., Cooney, C. L. & Sasisekharan, R. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 30, 387–444 (1995).
    Article CAS Google Scholar
  33. Parish, C.R. et al. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol. Cell Biol. 76, 104–113 (1998).
    Article CAS Google Scholar
  34. Willenborg, D.O. & Parish, C.R. Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J. Immunol. 140, 3401– 3405 (1988).
    CAS PubMed Google Scholar
  35. Vlodavsky, I. et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 14, 290– 302 (1994-95).
  36. Hershkoviz, R., Mor, F., Miao, H.Q., Vlodavsky, I. & Lider, O. Differential effects of polysulfated polysaccharide on experimental encephalomyelitis, proliferation of autoimmune T cells, and inhibition of heparanase activity. J. Autoimmun. 8, 741–750 (1995).
    Article CAS Google Scholar
  37. Parish, C.R., Freeman, C., Brown, K.J., Francis, D.J. & Cowden, W.B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. submitted. (1999).
  38. Lider, O. et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J. Clin. Invest. 83, 752– 756 (1989).
    Article CAS Google Scholar
  39. Hellman, U., Wernstedt, C., Gonez, J. & Heldin, C.H. Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451–455 (1995).
    Article CAS Google Scholar
  40. Messer, M., Griffiths, M., Rismiller, P.D. & Shaw, D.C. Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna alpha-lactalbumin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 403– 410 (1997).
    Article CAS Google Scholar
  41. Sambrook, J., Fritsch, E.F. & Maniatis T. Molecular cloning. A laboratory manual 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).
    Google Scholar
  42. Parish, C.R., Jakobsen, K.B. & Coombe, D.R. A basement-membrane permeability assay which correlates with the metastatic potential of tumor cells. Int. J. Cancer 52, 378–383 (1992).
    Article CAS Google Scholar
  43. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).
    Article CAS Google Scholar
  44. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselective procedure. Proc. Natl. Acad. Sci. USA 84, 3365– 3369 (1987).
    Article CAS Google Scholar

Download references