Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo (original) (raw)

References

  1. Lewis, T.S., Shapiro, P.S. & Ahn, N.G. Signal transduction through MAP kinase cascades. Adv.Cancer Res. 74, 49–139 (1998).
    Article CAS Google Scholar
  2. Cobb, M.H. & Goldsmith, E.J. How MAP kinases are regulated. J. Biol. Chem. 270, 14843– 14846 (1995).
    Article CAS Google Scholar
  3. Warne, P.H., Viciana, P.R. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).
    Article CAS Google Scholar
  4. Dent, P. et al. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257, 1404–1407 (1992).
    Article CAS Google Scholar
  5. Crews, C.M., Alessandrini, A. & Erikson, R.L. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258, 478–480 (1992).
    Article CAS Google Scholar
  6. Her, J.H. et al. Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation. Biochem. J. 296, 25–31 (1993).
    Article CAS Google Scholar
  7. Anderson, N.G., Maller, J.L., Tonks, N.K. & Sturgill, T.W. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343, 651–653 (1990).
    Article CAS Google Scholar
  8. Marais, R., Wynne, J. & Treisman, R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993).
    Article CAS Google Scholar
  9. Pang, L., Sawada, T., Decker, S.J. & Saltiel, A.R. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem. 270, 13585–13588 (1995).
    Article CAS Google Scholar
  10. Cowley, S., Paterson, H., Kemp, P. & Marshall, C.J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH3T3 cells. Cell 77, 841–852 (1994).
    Article CAS Google Scholar
  11. Seger, R. et al. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J. Biol. Chem. 267, 14373–14381 (1992).
    CAS PubMed Google Scholar
  12. Mansour, S.J. et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966– 970 (1994).
    Article CAS Google Scholar
  13. Dudley, D.T. & Saltiel, A.R. in Signal Transduction, Cell Cycle, and Their Inhibitors (ed. Gutkind, J.S.)(Humana, Totowa, New Jersey, in the press).
  14. Dudley, D.T., Pang, L., Decker, S.J., Bridges, A.J. & Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689 (1995).
    Article CAS Google Scholar
  15. Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T. & Saltiel, A.R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270, 27489– 27494 (1995).
    Article CAS Google Scholar
  16. Pages, G. et al. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci USA 90, 8319–8323 (1993).
    Article CAS Google Scholar
  17. Streit, M., Schmidt, R., Hilgenfeld, R.U., Thiel, E. & Kreuser, E.D. Adhesion receptors in malignant transformation and dissemination of gastrointestinal tumors. J. Mol. Med. 74, 253–268 ( 1996).
    Article CAS Google Scholar
  18. Ridley, A.J., Comoglio, P.M. & Hall, A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac and Rho in MDCK cells. Mol. Cell Biol. 15, 1110–1122 (1995).
    Article CAS Google Scholar
  19. Herrera, R. Modulation of hepatocyte growth factor-induced scattering of HT29 colon carcinoma cells. Involvement of the MAPK pathway. J. Cell Science 111, 1039–1049 (1998).
    CAS PubMed Google Scholar
  20. Potempa, S. & Ridley, A.J. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell 9, 2185–2200 (1998).
    Article CAS Google Scholar
  21. Tanimura, S. et al. Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering. Oncogene 17, 57–65 (1998).
    Article CAS Google Scholar
  22. Webb, C.P., Van Aelst, L., Wigler, M.H. & Vande Woude, G.F. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl. Acad. Sci. USA 95, 8773– 8778 (1998).
    Article CAS Google Scholar
  23. Khwaja, A., Lehmann, K., Marte, B.M. & Downward, J. Phosphoinositide 3-kinase induces scattering and tubulogenesis in epithelial cells through a novel pathway. J. Biol. Chem. 273, 18793–18801 (1998).
    Article CAS Google Scholar
  24. Takahashi-Tezuka, M. et al. Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol. Cell. Biol. 18, 4109–4117 (1998).
    Article CAS Google Scholar
  25. Weidner, K.M. et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173–176 (1996).
    Article CAS Google Scholar
  26. Klemke, R.L. et al. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137, 481– 492 (1997).
    Article CAS Google Scholar
  27. Corbett, T.H., Griswold, D.P., Roberts, B.J., Peckham, J.C. & Schabel, F.M. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays with a note on carcinogen structure. Cancer Res. 35, 2434–2439 (1975).
    CAS PubMed Google Scholar
  28. Sivaraman, V.S., Wang, H., Nuovo, G.J. & Malbon, C.C. Hyperexpression of mitogen-activated protein kinase in human breast cancer. J. Clin. Invest. 99, 1478–1483 (1997).
    Article CAS Google Scholar
  29. Mandell, J.W., Hussaini, I.M., Zecevic, M., Weber, M.J. & VandenBerg, S.R. In situ visualization of intratumor growth factor signaling. Immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms. Amer. J. Pathol. 153, 1411–1423 (1998).
    Article CAS Google Scholar
  30. Hoshino, R. et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18, 813–822 (1999).
    Article CAS Google Scholar
  31. Licato, L.L. et al. In vivo activation of mitogen-activated protein kinases in rat intestinal neoplasia. Gastroenterology 113, 1589–1598 (1997).
    Article CAS Google Scholar
  32. Licato, L.L. & Brenner. D.A. Analysis of signaling protein kinases in human colon or colorectal carcinomas. Dig. Dis. Sci. 43, 1454–1464 (1998).
    Article CAS Google Scholar
  33. Eliceiri, B.P., Klemke R., Stromblad, S. & Cheresh, D.A. Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140, 1255– 1263 (1998).
    Article CAS Google Scholar
  34. Milanini, J., Vinals, F., Pouyssegur, J. & Pages, G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J. Biol. Chem. 273, 18165–18172 (1998).
    Article CAS Google Scholar
  35. Petit, A.M. et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. 151, 1523–1530 (1997).
    CAS PubMed PubMed Central Google Scholar
  36. Fiddes, R.J. et al. Inhibition of the MAP kinase cascade blocks heregulin-induced cell cycle progression in T-47D human breast cancer cells. Oncogene 16, 2803–2813 (1998).
    Article CAS Google Scholar
  37. Amundadottir, L.T. & Leder, P. Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16, 737– 746 (1998).
    Article CAS Google Scholar

Download references