Direct analysis of protein complexes using mass spectrometry (original) (raw)
Pugh, B.F. Mechanisms of transcription complex assembly. Curr. Opin. Cell Biol.8, 303–311 ( 1996). ArticleCASPubMed Google Scholar
Wool, I.G., Chan, Y.-L. & Gluck, A. Structure and evolution of mammalian ribosomal proteins. Biochem. Cell Biol.73, 933– 947 (1995). ArticleCASPubMed Google Scholar
Mager, W.H. et al. A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Nucleic. Acids Res.25, 4872–4875 (1997). ArticleCASPubMedPubMed Central Google Scholar
Phizicky, E.M. & Fields, S. Protein–protein interactions: methods for detection and analysis. Microbiol. Rev.59, 94–123 (1995). CASPubMedPubMed Central Google Scholar
Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl. Acad. Sci. USA94, 385–390 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Amer. Soc. Mass Spectrom..5, 976– 989 (1994). ArticleCAS Google Scholar
Link, A.J., Carmack, E. & Yates, J.R. A strategy for the identification of proteins localized to subcellular spaces: applications to E. coli periplasmic proteins. Int. J. Mass Spectrom. Ion Proc.160, 303 –316 (1997). ArticleCAS Google Scholar
McCormack, A.L. et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal. Chem.69, 767–776 (1997). ArticleCASPubMed Google Scholar
Giddings, J.C. Concepts and comparisons in multidimensional separation. J. High Resol. Chromatogr. Commun.10, 319– 323 (1987). ArticleCAS Google Scholar
Lundell, N. & Markides, K. Two-dimensional liquid chromatography of peptides: an optimization of strategy. Chromatographia34, 369–375 (1992). ArticleCAS Google Scholar
O'Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975). CASPubMed Google Scholar
Takahashi, N., Ishioka, N., Takahashi, Y. & Putnam, F.W. Automated tandem high-performance liquid chromatographic system for separation of extremely complex peptide mixtures. J. Chromatogr.326, 407-418 (1985). ArticleCASPubMed Google Scholar
Opiteck, G.J., Lewis, K.C. & Jorgenson, J.W. Comprehensive on-line LC/LC/MS of proteins. Anal. Chem.69, 1518–1524 (1997). ArticleCASPubMed Google Scholar
Yates, J.R., Eng, J.K., McCormack, A.L. & Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem.67, 1426–1436 (1995). ArticleCASPubMed Google Scholar
Otaka, E. & Osawa, S. Yeast ribosomal proteins: V. Correlation of several nomenclatures and proposal of a standard nomenclature. Mol. Gen. Genet.181, 176–182 (1981). ArticleCAS Google Scholar
Mager, W.H. & Planta, R.J. Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol. Cell. Biol.104, 181–187 (1991). CAS Google Scholar
Link, A.J., Hays, L.G., Carmack, E.B. & Yates, J.R. Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis18, 1314–1334 (1997). ArticleCASPubMed Google Scholar
Gatlin, C.L., Kleemann, G.R., Hays, L.G., Link, A.J. & Yates, J.R. Protein identification at the low femtomole level from silver stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal. Biochem.263, 93– 101 (1998). ArticleCASPubMed Google Scholar
Ron, D. et al. Cloning of an intracellular receptor for protein kinase C: a homolog of the β subunit of G proteins. Proc. Natl. Acad. Sci. USA91, 839–843 ( 1994). ArticleCASPubMedPubMed Central Google Scholar
Chantrel, Y., Gaisne, M., Lions, C. & Verdiere, J. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics148, 559–569 ( 1998). CASPubMedPubMed Central Google Scholar
Battaner, E. & Vazquez, D. Preparation of active 60S and 40S subunits from yeast ribosomes. Methods Enzymol.20, 446–449 (1971). Article Google Scholar
Warner, J.R. & Gorenstein, C. in Methods in cell biology. (ed.Prescott, D.M.) 45–60 (Academic, New York; 1978). Google Scholar
Jones, E.W. Tackling the protease problem in Saccharomyces cerevisiae. Methods. Enzymol.194, 428–453 (1991). ArticleCASPubMed Google Scholar
Raue, H.A., Mager, W.H. & Planta, R.J. Structural and functional analysis of yeast ribosomal proteins. Methods Enzymol.194, 453– 477 (1991). ArticleCASPubMed Google Scholar
Wessel, D. & Flügge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem.138, 141– 143 (1984). ArticleCASPubMed Google Scholar
Drubin, D.G., Miller, K.G. & Botstein, D. Yeast actin-binding proteins: evidence for a role in morphogenesis. J. Cell Biol.107, 2551– 2561 (1988). ArticleCASPubMed Google Scholar
Ruan, H., Brown, C.Y. & Morris, D.R. in mRNA formation and function. (ed. Richter, J.D.) 305–321 (Academic, New York; 1997). Book Google Scholar
Güldener, U., Heck, S., Fiedler, T., Beinhauer, J. & Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res.24, 2519–2524 (1996). ArticlePubMedPubMed Central Google Scholar