Perham, R.N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry30, 8501–8512 ( 1991). ArticleCAS Google Scholar
Izard, T. et al. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA96, 1240– 1245 (1999). ArticleCAS Google Scholar
Patel, M.S. & Roche, T.M. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J.4, 3224–3233 (1990). ArticleCAS Google Scholar
Wynn, R.M., Davie, J.R., Meng, M. & Chuang, D.T. In Alpha-keto acid dehydrogenase complexes (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 101–117 (Birkhäuser Verlag, Basel; 1996). Book Google Scholar
Chuang, D.T. & Shih, V.E. In The metabolic and molecular bases of inherited disease (eds Scriver, C.R., Beudet, A.L., Sly, W.S. & Valle, D.) 1239–1227 (McGraw-Hill, New York; 1995). Google Scholar
Kerr, D.S., Wexler, I.D., Tripatara, A. & Patel, M.S. In Alpha-keto acid dehydrogenase complexes. (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 249–267 (Birkhäuser Verlag, Basel; 1996). Book Google Scholar
Massey, L.K., Sokatch, J.R., & Conrad, R.S. Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev.40, 42– 54 (1976). CASPubMedPubMed Central Google Scholar
Hawkins, C.F., Borges, A. & Perham, R.N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett.255, 77– 82 (1989). ArticleCAS Google Scholar
Perham, R.N. & Packman, L.C. 2-Oxo acid dehydrogenase multienzyme complexes: domains, dynamics and design. Ann. N.Y. Acad. Sci.573, 1–20 (1989). ArticleCAS Google Scholar
Burns, G., Brown, T., Hatter, K., Idriss, J.M. & Sokatch, J.R. Similarity of the E1 subunits of branched-chain-oxoacid dehydrogenase from Pseudomonas putida to the corresponding subunits of mammalian branched-chain-oxoacid and pyruvate dehydrogenases. Eur. J. Biochem.176, 311–317 (1988). ArticleCAS Google Scholar
Nikkola, M., Lindqvist, Y. & Schneider, G. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 Å resolution. J. Mol. Biol.238, 387–404 (1994). ArticleCAS Google Scholar
Muller, Y.A. et al. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure1, 95– 103 (1993). ArticleCAS Google Scholar
Hasson, M.S. et al. The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Biochemistry37, 9918– 9930 (1998). ArticleCAS Google Scholar
Chabrière, E., Charon, M.-H., Volbeda, A., Pieulle, L., Hatchikian, E.C. & Fontecilla-Camps, J.-C. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nature Struct. Biol.6, 182– 190 (1999). Article Google Scholar
Sundström, M., Lindqvist, Y., Schneider, G., Hellman, U. & Ronne, H. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J. Biol. Chem.268, 24346– 24352 (1993). PubMed Google Scholar
Schneider, G. & Lindqvist, Y. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis. Biochim. Biophys. Acta1385, 387– 398 (1998). ArticleCAS Google Scholar
Guo, F., Zhang, D., Kahyaoglu, A., Farid, R.S. & Jordan, F. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. Biochemistry37, 13379–13391 (1998). ArticleCAS Google Scholar
Schellenberger, A. Sixty years of thiamin diphosphate biochemistry. Biochim. Biophys. Acta1385, 177–186 ( 1998). ArticleCAS Google Scholar
Hübner, G. et al. Activation of thiamin diphosphate in enzymes. Biochim. Biophys. Acta1385, 221–228 (1998). Article Google Scholar
Harris, R.A., Paxton, R. & DePaoli-Roach, A.A. Inhibition of branched chain α-ketoacid dehydrogenase kinase activity by α-chloroisocaproate. J. Biol. Chem.257, 13915–13918 (1982). CASPubMed Google Scholar
Bürgi, H.B., Dunitz, J.D., Lehn, J.M. & Wipff, G. Stereochemistry of reaction paths at carbonyl centres. Tetrahedron30, 1563–1572 (1974). Article Google Scholar
Hawes, J.W. et al. Roles of amino acid residues surrounding phosphorylation site 1 of branched-chain α-ketoacid dehydrogenase (BCKDH) in catalysis and phophorylation site recognition by BCKDH kinase. J. Biol. Chem.270, 31071–31076 ( 1995). ArticleCAS Google Scholar
Hester, K., Luo, J., Burns, G., Braswell, E.H. & Sokatch, J.R. Purification of active E1α2β 2 of Pseudomonas putida branched-chain-oxoacid dehydrogenase. Eur. J. Biochem.233, 828– 836 (1995). ArticleCAS Google Scholar
Korotchkina, L.G., Ali, M.S. & Patel, M.S. In Alpha-keto acid dehydrogenase complexes (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 17–32 (Birkhäuser Verlag, Basel; 1996). Book Google Scholar
Berg, A. & de Kok, A. 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain. Biol. Chem.378, 617–634 (1997). CASPubMed Google Scholar
Pan, K. & Jordan, F. D,L-_S_-Methyllipoic acid methyl ester, a kinetically viable model for _S_-protonated lipoic acid as the oxidizing agent in reductive acyl transfers catalyzed by the 2-oxoacid dehydrogenase multienzyme complexes. Biochemistry37, 1357–1364 (1998). ArticleCAS Google Scholar
Yang, Y.S. & Frey, P.A. Dihydrolipoyl transacetylase of Escherichia coli. Formation of 8-S-acetyldihydrolipoamide. Biochemistry25, 8173–8178 (1986). ArticleCAS Google Scholar
Perham, R.N. In Alpha-keto acid dehydrogenase complexes (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 1–15 (Birkhäuser Verlag, Basel; 1996). Book Google Scholar
Wynn, R.M. et al. Cloning and expression in Escherichia coli of mature _E_1β subunit of bovine mitochondrial branched-chain α-keto acid dehydrogenase complex. J. Biol. Chem.267, 1881–1887 (1992). CASPubMed Google Scholar
Mande, S.S., Sarfaty, S., Allen, M.D., Perham, R.N. & Hol, W.G.J. Protein–protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase. Structure4, 277–286 (1996). ArticleCAS Google Scholar
Mattevi, A. et al. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science255, 1544– 1550 (1992). ArticleCAS Google Scholar
Mattevi, A., Obmolova, G., Sokatch, J.R., Betzel, C. & Hol, W.G.J. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 Å resolution. Proteins13, 336–351 (1992). ArticleCAS Google Scholar
Kalia, Y.N. et al. The high-resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J. Mol. Biol.230, 323–341 ( 1993). ArticleCAS Google Scholar
Dardel, F., Davis, A.L., Laue, E.D. & Perham, R.N. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J. Mol. Biol.229 , 1037–1048 (1993). ArticleCAS Google Scholar
Mattevi, A., Obmolova, G., Kalk, K.H., Teplyakov, A. & Hol, W.G.J. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase. Biochemistry32, 3887–3901 (1993). ArticleCAS Google Scholar
Bagdasarian, M.M. et al. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene16, 237–247 (1981). ArticleCAS Google Scholar
Sykes, P.J., Menard, J., McCully, V. & Sokatch, J.R. Conjugative mapping of pyruvate, 2-ketoglutarate, and branched-chain keto acid dehydrogenase genes in Pseudomonas putida mutants. J. Bacteriol.162, 203–208 (1985). CASPubMedPubMed Central Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.277, 307–326 ( 1997). Article Google Scholar
Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 ( 1994).
Navazza, J. AMoRe, an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 ( 1994). Article Google Scholar
de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol.276, 472–494 (1997). ArticleCAS Google Scholar
Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondral F1 ATPase. Acta Crystallogr. D52, 30– 42 (1996). ArticleCAS Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Brünger, A.T., Krukowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A46, 585–593 (1990). Article Google Scholar
Brünger, A.T., et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). Article Google Scholar
Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946 –950 (1991). Article Google Scholar
Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph.15, 132–134 (1997). ArticleCAS Google Scholar
Nicholls, A., Shar, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Gen.11, 282–296 (1991). Article Google Scholar
Merritt, E.A. & Murphy, M.E.P. Raster3D Version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 ( 1994). ArticleCAS Google Scholar