Requirement for Wnt3 in vertebrate axis formation (original) (raw)
References
McMahon, A.P. & Moon, R.T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell58, 1075–1084 (1989). ArticleCAS Google Scholar
Popperl, H. et al. Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development124, 2997–3005 (1997). CASPubMed Google Scholar
Zheng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell90, 181–192 (1997). Article Google Scholar
Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev.11, 3286–3305 (1997). ArticleCAS Google Scholar
Roelink, H., Wagenaar, E., Lopes da Silva, S. & Nusse, R. Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proc. Natl Acad. Sci. USA87, 4519–4523 (1990). ArticleCAS Google Scholar
Christian, J.L., Gavin, B.J., McMahon, A.P. & Moon, R.T. Isolation of cDNAs partially encoding four Xenopus Wnt-1/int-1-related proteins and characterization of their transient expression during embryonic development. Dev. Biol.143, 230–234 (1991). ArticleCAS Google Scholar
Krauss, S., Korzh, V., Fjose, A. & Johansen, T. Expression of four zebrafish _wnt_-related genes during embryogenesis. Development116, 249–259 (1992). CASPubMed Google Scholar
Roelink, H., Wang, J., Black, D.M., Solomon, E. & Nusse, R. Molecular cloning and chromosomal localization to 17q21 of the human WNT3 gene. Genomics17, 790–792 (1993). ArticleCAS Google Scholar
Roelink, H. & Nusse, R. Expression of two members of the Wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev.5, 381–388 (1991). ArticleCAS Google Scholar
Parr, B.A., Shea, M.J., Vassileva, G. & McMahon, A.P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development119, 247–261 (1993). CASPubMed Google Scholar
Simeone, A. et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J.12, 2735–2747 (1993). ArticleCAS Google Scholar
Rosner, M.H. et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature345, 686–692 (1990). ArticleCAS Google Scholar
Lawson, K.A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999). ArticleCAS Google Scholar
Thomas, P. & Beddington, R.S.P. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol.6, 1487–1496 (1996). ArticleCAS Google Scholar
Barnes, J.D., Crosby, J.L., Jones, C.M., Wright, C.V.E. & Hogan, B.L.M. Embryonic expression of Lim-1, the mouse homolog of Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev. Biol.161, 168–178 (1994). Article Google Scholar
Belo, J.A. et al. _Cerberus_-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev.68, 45–57 (1997). ArticleCAS Google Scholar
Moon, R.T. & Kimelman, D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays20, 536–545 (1998). ArticleCAS Google Scholar
Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science282, 2072–2075 (1998). ArticleCAS Google Scholar
Tam, P.P.L., Goldman, D., Camus, A. & Schoenwolf, G.C. Early events of somitogenesis in higher vertebrates: allocation of precursor cells during gastrulation and the organization of a meristic pattern in the paraxial mesoderm. Curr. Topics Dev. Biol. (in press).
Tam, P.P.L. & Behringer, R.R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev.68, 3–25 (1997). ArticleCAS Google Scholar
Beddington, R.S.P. & Robertson, E.J. Axis development and early asymmetry in mammals. Cell96, 195–209 (1999). ArticleCAS Google Scholar
Ang, S.-L. & Rossant, J. Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development118, 139–49 (1993). CASPubMed Google Scholar
Ang, S.L., Conlon, R.A., Jin, O. & Rossant, J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development120, 2979–2989 (1994). CASPubMed Google Scholar
Ramírez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature378, 720–724.
Liu, P., Zhang, H., McLellan, A., Vogel, H. & Bradley, A. Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics150, 1155–1168 (1998). CASPubMedPubMed Central Google Scholar
Zheng, B. et al. Engineering a mouse balancer chromosome. Nature Genet.22, 375–381 (1999). ArticleCAS Google Scholar
Wilkinson, D.G. in In Situ Hybridization (ed. Wilkinson, D.G.) 75–83 (IRL, Oxford, 1992). Google Scholar