Fluorescent proteins from nonbioluminescent Anthozoa species (original) (raw)

References

  1. Kendall, J.M. & Badminton, M.N. Aequorea victoria bioluminescence moves into an exciting new era. Trends Biotechnol. 16, 216–224 (1998).
    Article CAS Google Scholar
  2. Johnson, F.H. et al. Quantum efficiency of Cypridina luminescense, with a note on that of Aequorea. J. Cell. Comp. Physiol. 60, 85–104 (1962).
    Article CAS Google Scholar
  3. Ward, W.W. in Green fluorescent protein: properties, applications, and protocols. M. Chalfie & S. Kain. 45–75 (Wiley-Liss, New York; 1998).
    Google Scholar
  4. Ward, W.W. Energy transfer processes in bioluminescence. Photochem. Photobiol. Rev. 4, 1–57 (1979).
    CAS Google Scholar
  5. Morin, J.G. in Coelenterates biology. Reviews and new perspectives 397–438 (Academic Press, New York; 1974).
    Book Google Scholar
  6. Prasher, D.C. Using GFP to see the light. Trends Genet. 11, 320–323 (1995).
    Article Google Scholar
  7. Labas Y.A . On the mechanism of the calcium activated bioluminescence of Ctenophora. Biophysics of Living Cell 4, 83–110 (1973).
    CAS Google Scholar
  8. Ward, W.W. & Cormier, M.J. An energy transfer protein in coelenterate bioluminescence: characterization of the Renilla green-fluorescent protein. J. Biol. Chem. 254, 781–788 (1979).
    CAS PubMed Google Scholar
  9. Hastings, J.W. & Morin, J.G. in Green fluorescent protein: properties, applications, and protocols. M. Chalfie & S. Kain. 17–41 (Wiley-Liss, New York; 1998).
    Google Scholar
  10. Rees, J.F. et al. The origins of marine bioluminescence—turning oxygen defense-mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221 (1998).
    CAS PubMed Google Scholar
  11. Mazel, C.H. Spectral measurements of fluorescence emission in caribbean cnidarians. Mar. Ecol. Prog. Ser. 120, 185–191 (1995).
    Article Google Scholar
  12. Catala, R. Fluorescence effect from corals irradiated with ultra-violet rays. Nature 183, 949 (1959).
    Article Google Scholar
  13. Kawaguti, S. On the physiology of reef corals. VI. Study of the pigments. Palao trop. Biol. Stn. Stud. 2, 617–674 (1944).
    Google Scholar
  14. Schlichter, D., Meier, U. & Fricke, H.W. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99, 124–131 (1994).
    Article CAS Google Scholar
  15. Delbeek, J.C. & Sprung, J. The reef aquarium: a comprehensive guide to the identification and care of tropical marine invertebrates Vol. 2. (Ricordea Publishing, Coconut Grove, FL; 1994).
    Google Scholar
  16. Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560 (1999).
    Article CAS Google Scholar
  17. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).
    Article Google Scholar
  18. Yang, F., Moss, L.G. & Phillips, G.N. Jr., The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).
    Article CAS Google Scholar
  19. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).
    Article CAS Google Scholar
  20. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G. & Ward, W.W. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32, 1212–1218 (1993).
    Article CAS Google Scholar
  21. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995).
    Article CAS Google Scholar
  22. Delgrave, S., Hawtin, R.E., Silva, C.M., Yang, M.M. & Youvan, D.C. Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13, 151–154 (1995).
    Google Scholar
  23. Chattoraj, M., King, B.A., Bublitz, G.U. & Boxer, S.G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).
    Article CAS Google Scholar
  24. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. USA 94, 2306–2311 (1997).
    Article CAS Google Scholar
  25. Ehrig, T., O'Kane, D.J. & Prendergast, F.G. Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 367, 163–166 (1995).
    Article CAS Google Scholar
  26. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
    Article CAS Google Scholar
  27. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression Biotechniques 7, 980–990 (1989).
    CAS PubMed PubMed Central Google Scholar
  28. Zaraisky, A.G. et al. The homeobox-containing gene XANF-1 may control development of the Spemann organizer. Development 121, 3839–3847 (1995).
    CAS PubMed Google Scholar
  29. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).
    Article CAS Google Scholar
  30. Gill, S.C. & Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).
    Article CAS Google Scholar
  31. Wetlaufer, D.B. Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 17, 303–390 (1962).
    Article CAS Google Scholar
  32. Mach, H., Middaugh, C.R. & Lewis, R.V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal. Biochem. 200, 74–80 (1992).
    Article CAS Google Scholar

Download references