Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy (original) (raw)

References

  1. Binnig, G., Quate, C. F. & Gerber, C. H. Atomic force microscopy. Phys. Rev. Lett. 56, 930–933 ( 1986).
    Article ADS CAS Google Scholar
  2. Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586– 1589 (1989).
    Article ADS CAS Google Scholar
  3. Lee, G. U., Kidwell, D. A. & Colton, R. J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).
    Article CAS Google Scholar
  4. Florin, E.-L., Moy, V. T. & Gaub, H. E. Adhesive forces between individual ligand receptor pairs. Science 264, 415–417 (1994).
    Article ADS CAS Google Scholar
  5. Moy, V. T., Florin, E.-L. & Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 264, 257– 259 (1994).
    Article ADS Google Scholar
  6. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477– 3481 (1996).
    Article ADS CAS Google Scholar
  7. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541– 1555 (1997).
    Article CAS Google Scholar
  8. Green, N. M. Avidin. Adv. Protein Chem. 29, 85– 133 (1975).
    Article CAS Google Scholar
  9. Grubmuller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271, 997–999 (1996).
    Article ADS CAS Google Scholar
  10. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y. & Schulten, K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72, 1568–1581 (1997).
    Article CAS Google Scholar
  11. Chilkoti, A. & Stayton, P. S. Molecular origins of the slow streptavidin-biotin dissociation kinetics. J.Am. Chem. Soc. 117, 10622–10628 (1995).
    Article CAS Google Scholar
  12. Evans, E., Ritchie, K. & Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68, 2580–2587 (1995).
    Article ADS CAS Google Scholar
  13. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).
    Article ADS CAS Google Scholar
  14. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 ( 1989).
    Article ADS CAS Google Scholar
  15. Livnah, O., Bayer, E. A., Wilchek, M. & Sussman, J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl Acad. Sci. USA 90, 5076– 5080 (1993).
    Article ADS CAS Google Scholar
  16. Freitag, S., Le Trong, I., Klumb, L., Stayton, P. S. & Stenkamp, R. E. Structural studies of the streptavidin binding loop. Protein Sci. 6, 1157–1166 (1997).
    Article CAS Google Scholar
  17. Chu, V., Freitag, S., Le Trong, I., Stenkamp, R. E. & Stayton, P. S. Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system. Protein Sci. 7, 848– 859 (1998).
    Article CAS Google Scholar
  18. Alon, R., Hammer, D. A. & Springer, T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374, 539–542 (1995).
    Article ADS CAS Google Scholar
  19. Brunk, D. K., Goetz, D. J. & Hammer, D. A. Sialyl Lewisx /E-selectin-mediated rolling in a cell-free system. Biophys. J. 71, 2902–2907 (1996).
    Article CAS Google Scholar
  20. Rief, M., Gautel, M., Osterhelt, F., Fermandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobin domains by AFM. Science 276, 1109–1112 (1997).
    Article CAS Google Scholar
  21. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 ( 1998).
    Article ADS CAS Google Scholar
  22. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht) 7, 284– 304 (1940).
    Article ADS MathSciNet CAS Google Scholar
  23. Hanggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–342 (1990).
    Article ADS MathSciNet Google Scholar
  24. Wong, S. S., Joselivich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).
    Article ADS CAS Google Scholar

Download references