The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation (original) (raw)

References

  1. Kaila, K. Ionic basis of GABAAreceptor channel function in the nervous system. Prog. Neurobiol. 42, 489– 537 (1994).
    Article CAS Google Scholar
  2. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989).
    Article CAS Google Scholar
  3. Cherubini, E., Gaiarsa, J. L. & Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515– 519 (1991).
    Article CAS Google Scholar
  4. Serafini, R., Valeyev, A. Y., Barker, J. L. & Poulter, M. O. Depolarizing GABA-activated Cl− channels in embryonic rat spinal and olfactory bulb cells. J. Physiol. (Lond.) 488, 371–386 (1995).
    Article CAS Google Scholar
  5. Yuste, R. & Katz, L. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991).
    Article CAS Google Scholar
  6. LoTurco, J., Owens, D., Heath, M., Davis, M. & Kriegstein, A. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287 –1298 (1995).
    Article CAS Google Scholar
  7. Payne, J. A., Stevenson, J. & Donaldson, L. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J. Biol. Chem. 271, 16245–16252 (1996).
    Article CAS Google Scholar
  8. Gillen, C., Brill, S., Payne, J. A. & Forbush, B. II Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J. Biol. Chem. 271, 16237–16244 (1993).
    Article Google Scholar
  9. Payne, J. A. Functional characterization of the neuronal-specific K-Cl cotransporter KCC2: Implications for [K+]0regulation. Am. J. Physiol. 42, C1516–C1525 (1997).
    Article Google Scholar
  10. Misgeld, U., Deisz, R. A., Dodt, H. U. & Lux, H. D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413–1415 (1986).
    Article ADS CAS Google Scholar
  11. Thompson, S. M. & Gähwiler, B. H. Activity-dependent disinhibition. II. Effect of extracellular potassium, furosemide, and membrane potential on E cl - in hippocampal CA3 neurons. J. Neurophysiol. 61, 512–523 (1989).
    Article CAS Google Scholar
  12. Deschenes, M., Feltz, P. & Lamour, Y. Amodel for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res. 118, 486–493 (1976).
    Article CAS Google Scholar
  13. Bayer, S. A. & Altman, J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog. Neurobiol. 29, 57–106 ( 1987).
    Article CAS Google Scholar
  14. Rivera, C., Wegelius, K., Reeben, M., Saarma, M. & Kaila, K. Developmental regulation of K-Cl cotransporter (KCC2 and KCC1) mRNA in early postnatal rat hippocampus. Soc. Neurosci. Abstr. 23, 26.7 (1997).
    Google Scholar
  15. Clayton, G. H., Owens, G. C., Wolff, J. S. & Smith, R. L. Ontogeny of cation-Cl cotransporter expression in rat neocortex. Brain Res. Dev. Brain Res. 109, 281– 292 (1998).
    Article CAS Google Scholar
  16. Stoppini, L., Buchs, P. A. & Muller, D. Asimple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173– 182 (1991).
    Article CAS Google Scholar
  17. Bevensee, M. O. & Boron, W. F. in pH and Brain Function(eds Kaila, K. & Ransom, B.) 211–231 (Wiley, New York, (1998)).
    Google Scholar
  18. Kaila, K., Voipio, J., Paalasmaa, P., Pasternack, M. & Deisz, R. A. The role of bicarbonate in GABA Areceptor-mediated IPSPs of rat neocortical neurons. J. Physiol. (Lond.) 464, 273–289 ( 1993).
    Article CAS Google Scholar
  19. Clayton, G. H., Staley, K. J., Wilcox, C. L., Owens, G. C. & Smith, R. L. Developmental expression of CLC-2 in the rat nervous system. Brain Res. Dev. Brain Res. 108, 307–318 (1998).
    Article CAS Google Scholar
  20. Zhang, L., Spiegelman, I. & Carlen, P. Development of GABA-mediated chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J. Physiol. (Lond.) 444, 25–49 (1991).
    Article CAS Google Scholar
  21. Sutor, B. & Luhmann, H. Development of exitatory and inhibitory postsynaptic potentials in the rat neocortex. Perspectives Dev. Neurobiol. 2, 409–419 ( 1994).
    Google Scholar
  22. Wu, W. L., Ziskind-Conhaim, L. & Sweet, M. A. Early development of glycine and GABA mediated synapses in rat spinal cord. J. Neurosci. 12, 3935 –3945 (1992).
    Article CAS Google Scholar
  23. van den Pol, A. N., Obrietan, K. & Chen, G. Exitatory action of GABA after neuronal trauma. J. Neurosci. 16, 4283–4292 (1996).
    Article CAS Google Scholar
  24. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chlorophorm extraction. Anal. Biochem. 162, 156–159 (1987).
    Article CAS Google Scholar
  25. Pasternack, M., Smirnov, S. & Kaila, K. Proton modulation of functionally distinct GABAAreceptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 35, 1279–1288 ( 1996).
    Article CAS Google Scholar
  26. Moshnyakov, M., Arumäe, U. & Saarma, M. mRNAs for one two or three members of trk receptor family are expressed in single rat trigeminal ganglion neurons. Mol. Brain Res. 43, 141–148 ( 1996).
    Article CAS Google Scholar
  27. Bengström, M. & Paulin, L. Synthesis and purification of thio-oligonucleotides. Nucleic Acids Symp. Ser. 24, 288 (1991).
    Google Scholar
  28. Pirvola, U. et al. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc. Natl Acad. Sci. USA 89, 9915–9919 (1992).
    Article ADS CAS Google Scholar

Download references