Direct interaction of microtubule- and actin-based transport motors (original) (raw)

References

  1. Langford, G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7, 82–88 (1995).
    Article CAS Google Scholar
  2. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997).
    Article CAS Google Scholar
  3. Brady, S. T. Akinesin medley: biochemical and functional heterogeneity. Trends Cell Biol. 5, 159–164 (1995).
    Article CAS Google Scholar
  4. LeBeux, Y. J. & Willemot, J. An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labeling. II. The synapses. Cell. Tissue Res. 160, 37–68 (1975).
    CAS PubMed Google Scholar
  5. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).
    Article CAS Google Scholar
  6. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).
    Article CAS Google Scholar
  7. Dekker-Ohno, K., Oda, S., Yamamura, H. & Kondo, K. An ataxic mutant rat with dilute coat color. Lab. Anim. Sci. 43, 370–372 (1993).
    CAS PubMed Google Scholar
  8. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Anovel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).
    Article ADS CAS Google Scholar
  9. Provance, D. W., Wei, M., Ipe, V. & Mercer, J. A. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl Acad. Sci. USA 93, 14554–14558 (1996).
    Article ADS CAS Google Scholar
  10. Wu, X. F., Bowers, B., Wei, Q., Kocher, B. & Hammer, J. A. Myosin V associates with melanosomes in mouse melanocytes — evidence that myosin V is an organelle motor. J. Cell Sci. 110, 847–859 (1997).
    CAS PubMed Google Scholar
  11. Dekker-Ohno, K. et al. Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res. 714, 226–230 (1996).
    Article CAS Google Scholar
  12. Takagishi, Y. et al. The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci. Lett. 215, 169–172 (1996).
    Article CAS Google Scholar
  13. Prasad, R. et al. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res. 53, 5624–5628 (1993).
    CAS PubMed Google Scholar
  14. Miyamoto, H. et al. canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila. Genes Dev. 9, 612–625 (1995).
    Article CAS Google Scholar
  15. Ponting, C. P. AF-6/cno: neither a kinesin nor a myosin, but a bit of both. Trends Biochem. Sci. 20, 265–266 (1995).
    Article CAS Google Scholar
  16. Gudkov, A. V. et al. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl Acad. Sci. USA 91, 3744–3748 (1994).
    Article ADS CAS Google Scholar
  17. Leopold, P. L., McDowall, A. W., Pfister, K. K., Bloom, G. S. & Brady, S. T. Association of kinesin with characterized membrane-bounded organelles. Cell Motil. Cytoskeleton 23, 19–33 (1992).
    Article CAS Google Scholar
  18. Brady, S. T., Pfister, K. K. & Bloom, G. S. Amonoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc. Natl. Acad. Sci. USA 87, 1061–1065 (1990).
    Article ADS CAS Google Scholar
  19. Hirokawa, N. et al. Kinesin associates with anterogradely transported membranous organelles in vivo. J. Cell Biol. 114, 295–302 (1991).
    Article CAS Google Scholar
  20. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. Monoclonal antibodies tokinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J.Cell Biol. 108, 1453–1463 (1989).
    Article CAS Google Scholar
  21. Rodionov, V. I., Gyoeva, F. K. & Gelfand, V. I. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc. Natl Acad. Sci. USA 88, 4956–4960 (1991).
    Article ADS CAS Google Scholar
  22. Niclas, J., Navone, F., Hom-Booher, N. & Vale, R. D. Cloning and localization of a conventional kinesin motor expressed exclusively in neurons. Neuron 12, 1059–1072 (1994).
    Article CAS Google Scholar
  23. Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol. 117, 1263–1275 (1992).
    Article CAS Google Scholar
  24. Tsan, J. T. et al. in The Yeast Two-Hybrid Systems(eds Bartel, P. L. & Fields, P. S.) 217–232 (Oxford Univ. Press, Oxford, (1997)).
    Google Scholar
  25. Stenoien, D. S. & Brady, S. T. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675–689 (1997).
    Article CAS Google Scholar
  26. Evans, L. L., Hammer, J. & Bridgman, P. C. Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J. Cell Sci. 110, 439–449 (1997).
    CAS PubMed Google Scholar
  27. Prekeris, R. & Terrian, D. M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J. Cell Biol. 137, 1589–1601 (1997).
    Article CAS Google Scholar
  28. Lillie, S. H. & Brown, S. S. Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358–361 (1992).
    Article ADS CAS Google Scholar
  29. Lillie, S. H. & Brown, S. S. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825–842 (1994).
    Article CAS Google Scholar
  30. Seperack, P. K., Mercer, J. A., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner. EMBO J. 14, 2326–2332 (1995).
    Article CAS Google Scholar

Download references