TPL-2 kinase regulates the proteolysis of the NF-κB-inhibitory protein NF-κB1 p105 (original) (raw)
References
Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). ArticleCAS Google Scholar
Ghosh, S. et al. Cloning of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell62, 1019–1029 (1990). ArticleCAS Google Scholar
Kieran, M. et al. The DNA binding subunit of NF-κB is identical to factor KBF1 and homologous to the rel oncogene product. Cell62, 1007–1018 (1990). ArticleCAS Google Scholar
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB 1 precursor protein and activation of NF-κB. Cell78, 773–785 (1994). ArticleCAS Google Scholar
Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell92, 819– 828 (1998). ArticleCAS Google Scholar
Rice, N. R., MacKichan, M. L. & Israel, A. The precursor of NF-κB p50 has IκB-like functions. Cell71, 243– 253 (1992). ArticleCAS Google Scholar
Mercurio, F., DiDonato, J. A., Rosette, C. & Karin, M. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev.7, 705– 718 (1993). ArticleCAS Google Scholar
Donald, R., Ballard, D. W. & Hawiger, J. Proteolytic processing of NF-κB/IκB in human monocytes. J.Biol. Chem.270, 9– 12 (1995). ArticleCAS Google Scholar
MacKichan, M. L., Logeat, F. & Israel, A. Phosphorylation of p105 PEST sequences via a redox-insensitive pathway up-regulates processing to p50 NF-κB. J. Biol. Chem.271, 6084–6091 ( 1996). ArticleCAS Google Scholar
Mellits, K. H., Hay, R. T. & Goodbourn, S. Proteolytic degradation of MAD3 (IκBα) and enhanced processing of the NF-κB precursor p105 are obligatory steps in the activation of NF-κB. Nucleic Acids Res.21, 5059–5066 (1993). ArticleCAS Google Scholar
Patriotis, C., Makris, A., Bear, S. E. & Tsichlis, P. N. Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T cell lymphomas and in T cell activation. Proc. Natl Acad. Sci. USA90, 2251–2255 (1993). ArticleADSCAS Google Scholar
Salmeron, A. et al. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J.15, 817–826 (1996). ArticleCAS Google Scholar
Aoki, M. et al. The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation. J. Biol. Chem.268, 22723– 22732 (1993). CASPubMed Google Scholar
Fromont-Racine, M., Rain, J. -C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid analysis. Nature Genet.16, 277–282 (1997). ArticleCAS Google Scholar
Malinin, N. L., Boldin, M. P., Kovalenko, A. V. & Wallach, D. MAP 3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature385, 540–544 (1997). ArticleADSCAS Google Scholar
May, M. J. & Ghosh, S. Signal transduction through NF-κB. Immunol. Today19, 80– 88 (1998). ArticleCAS Google Scholar
Henkel, T. et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell68, 1121–1133 ( 1992). ArticleCAS Google Scholar
Watanabe, N., Iwamura, T., Shinoda, T. & Fujita, T. Regulation of NF-κB1 proteins by the candidate oncoprotein BCL-3: generation of NF-κB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation. EMBO J.16, 3609–3620 ( 1997). ArticleCAS Google Scholar
Blank, V., Kourilsky, P. & Israel, A. Cytoplasmic retention, DNA binding and processing of the NF-κB p50 precursor are controlled by a small region in its C-terminus. EMBO J.10, 4159–4167 (1991). ArticleCAS Google Scholar
Lin, L. & Ghosh, S. Aglycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol.16, 2248– 2254 (1996). ArticleCAS Google Scholar
Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKK-α and IKK-β, necessary for IκB phosphorylation and NF-κB activation. Cell91 , 243–252 (1997). ArticleCAS Google Scholar
Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science278, 860–866 (1997). ArticleADSCAS Google Scholar
Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science278, 866–869 ( 1997). ArticleADSCAS Google Scholar
Ceci, J. D. et al. TPL-2 is an oncogenic kinase that is activated by carboxy-terminal truncation. Genes Dev.11, 688– 700 (1997). ArticleCAS Google Scholar
Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell77, 841–852 (1994). ArticleCAS Google Scholar
Fan, C. -M. & Maniatis, T. Generation of p50 subunit of NF-κB by processing of p105 through an ATP-dependent pathway. Nature354, 395–398 ( 1991). ArticleADSCAS Google Scholar
Kabouridis, P. S., Magee, A. I. & Ley, S. C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J.16, 4983–4998 (1997). ArticleCAS Google Scholar
Huby, R. D. J., Iwashima, M., Weiss, A. & Ley, S. C. ZAP-70 protein tyrosine kinase is constitutively targeted to the T cell cortex independently of its SH2 domains. J. Cell. Biol.137, 1639–1649 (1997). ArticleCAS Google Scholar
Alkalay, I. et al. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol.15, 1294–1301 (1995). ArticleCAS Google Scholar
Lenardo, M. J. & Baltimore, D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell58, 227–229 ( 1989). ArticleCAS Google Scholar