TPL-2 kinase regulates the proteolysis of the NF-κB-inhibitory protein NF-κB1 p105 (original) (raw)

References

  1. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).
    Article CAS Google Scholar
  2. Ghosh, S. et al. Cloning of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell 62, 1019–1029 (1990).
    Article CAS Google Scholar
  3. Kieran, M. et al. The DNA binding subunit of NF-κB is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62, 1007–1018 (1990).
    Article CAS Google Scholar
  4. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB 1 precursor protein and activation of NF-κB. Cell 78, 773–785 (1994).
    Article CAS Google Scholar
  5. Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819– 828 (1998).
    Article CAS Google Scholar
  6. Rice, N. R., MacKichan, M. L. & Israel, A. The precursor of NF-κB p50 has IκB-like functions. Cell 71, 243– 253 (1992).
    Article CAS Google Scholar
  7. Mercurio, F., DiDonato, J. A., Rosette, C. & Karin, M. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev. 7, 705– 718 (1993).
    Article CAS Google Scholar
  8. Donald, R., Ballard, D. W. & Hawiger, J. Proteolytic processing of NF-κB/IκB in human monocytes. J.Biol. Chem. 270, 9– 12 (1995).
    Article CAS Google Scholar
  9. MacKichan, M. L., Logeat, F. & Israel, A. Phosphorylation of p105 PEST sequences via a redox-insensitive pathway up-regulates processing to p50 NF-κB. J. Biol. Chem. 271, 6084–6091 ( 1996).
    Article CAS Google Scholar
  10. Mellits, K. H., Hay, R. T. & Goodbourn, S. Proteolytic degradation of MAD3 (IκBα) and enhanced processing of the NF-κB precursor p105 are obligatory steps in the activation of NF-κB. Nucleic Acids Res. 21, 5059–5066 (1993).
    Article CAS Google Scholar
  11. Patriotis, C., Makris, A., Bear, S. E. & Tsichlis, P. N. Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T cell lymphomas and in T cell activation. Proc. Natl Acad. Sci. USA 90, 2251–2255 (1993).
    Article ADS CAS Google Scholar
  12. Salmeron, A. et al. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J. 15, 817–826 (1996).
    Article CAS Google Scholar
  13. Aoki, M. et al. The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation. J. Biol. Chem. 268, 22723– 22732 (1993).
    CAS PubMed Google Scholar
  14. Fromont-Racine, M., Rain, J. -C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid analysis. Nature Genet. 16, 277–282 (1997).
    Article CAS Google Scholar
  15. Malinin, N. L., Boldin, M. P., Kovalenko, A. V. & Wallach, D. MAP 3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385, 540–544 (1997).
    Article ADS CAS Google Scholar
  16. May, M. J. & Ghosh, S. Signal transduction through NF-κB. Immunol. Today 19, 80– 88 (1998).
    Article CAS Google Scholar
  17. Henkel, T. et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68, 1121–1133 ( 1992).
    Article CAS Google Scholar
  18. Watanabe, N., Iwamura, T., Shinoda, T. & Fujita, T. Regulation of NF-κB1 proteins by the candidate oncoprotein BCL-3: generation of NF-κB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation. EMBO J. 16, 3609–3620 ( 1997).
    Article CAS Google Scholar
  19. Blank, V., Kourilsky, P. & Israel, A. Cytoplasmic retention, DNA binding and processing of the NF-κB p50 precursor are controlled by a small region in its C-terminus. EMBO J. 10, 4159–4167 (1991).
    Article CAS Google Scholar
  20. Lin, L. & Ghosh, S. Aglycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248– 2254 (1996).
    Article CAS Google Scholar
  21. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKK-α and IKK-β, necessary for IκB phosphorylation and NF-κB activation. Cell 91 , 243–252 (1997).
    Article CAS Google Scholar
  22. Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866 (1997).
    Article ADS CAS Google Scholar
  23. Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 ( 1997).
    Article ADS CAS Google Scholar
  24. Ceci, J. D. et al. TPL-2 is an oncogenic kinase that is activated by carboxy-terminal truncation. Genes Dev. 11, 688– 700 (1997).
    Article CAS Google Scholar
  25. Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).
    Article CAS Google Scholar
  26. Fan, C. -M. & Maniatis, T. Generation of p50 subunit of NF-κB by processing of p105 through an ATP-dependent pathway. Nature 354, 395–398 ( 1991).
    Article ADS CAS Google Scholar
  27. Kabouridis, P. S., Magee, A. I. & Ley, S. C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983–4998 (1997).
    Article CAS Google Scholar
  28. Huby, R. D. J., Iwashima, M., Weiss, A. & Ley, S. C. ZAP-70 protein tyrosine kinase is constitutively targeted to the T cell cortex independently of its SH2 domains. J. Cell. Biol. 137, 1639–1649 (1997).
    Article CAS Google Scholar
  29. Alkalay, I. et al. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol. 15, 1294–1301 (1995).
    Article CAS Google Scholar
  30. Lenardo, M. J. & Baltimore, D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227–229 ( 1989).
    Article CAS Google Scholar

Download references