The nature of the hydrated excess proton in water (original) (raw)

References

  1. de Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. Ann. Chim. LVIII, 54–74 (1806).
    Google Scholar
  2. Atkins, P. W. Physical Chemistry 6th edn, Ch. 24.8, 741 (Oxford Univ. Press, (1998)).
    Google Scholar
  3. Hückel, E. Theorie der Beweglichkeiten des Wasserstoff- und Hydroxylions in wässriger Lösung. Z. Elektrochem. 34, 546–562 (1928).
    Google Scholar
  4. Stearn, A. E. & Eyring, J. The deduction of reaction mechanisms from the theory of absolute rates. J.Chem. Phys. 5, 113–124 (1937).
    Article ADS CAS Google Scholar
  5. Bernal, J. D. & Fowler, R. H. Atheory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).
    Article ADS CAS Google Scholar
  6. Wannier, G. Die Beweglichkeit des Wasserstoff- und Hydroxylions in wäßriger Lösung. Ann. Phys. (Leipz.) 24, 545–590 (1935).
    Article ADS CAS Google Scholar
  7. Huggins, M. L. Hydrogen bridges in ice and liquid water. J. Phys. Chem. 40, 723–731 (1936).
    Article CAS Google Scholar
  8. Wicke, E., Eigen, M. & Ackermann, Th. Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung. Z. Phys. Chem. (N.F.) 1, 340–364 (1954).
    Article Google Scholar
  9. Eigen, M. Proton transfer, acid–base catalysis and enzymatic hydrolysis. Angew. Chem. Int. Edn Engl. 3, 1–19 (1964).
    Article Google Scholar
  10. Zundel, G. & Metzger, H. Energiebänder der tunnelnden Überschuß-Protenon in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O+2. Z. Physik. Chem. (N.F.) 58, 225–245 (1968).
    Article CAS Google Scholar
  11. Zundel, G. in The Hydrogen Bond—Recent Developments in Theory and Experiments. II. Structure and Spectroscopy (eds Schuster, P., Zundel, G. & Sandorfy, C.) 683–766 (North-Holland, Amsterdam, (1976)).
    Google Scholar
  12. Marx, D. & Parrinello, M. Ab initio path-integral molecular dynamics. Z. Phys. B (Rapid Note) 95, 143–144 (1994).
    Article ADS CAS Google Scholar
  13. Marx, D. & Parrinello, M. Ab initio path integral molecular dynamics: basic ideas. J. Chem. Phys. 104, 4077–4082 (1996).
    Article ADS CAS Google Scholar
  14. Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J. Chem. Phys. 104, 5579–5588 (1996).
    Article ADS CAS Google Scholar
  15. Cleland, W. W. & Kreevoy, M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science 264, 1887–1890 (1994).
    Article ADS CAS Google Scholar
  16. Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science 275, 817–820 (1997).
    Article CAS Google Scholar
  17. Guissani, Y., Guillot, B. & Bratos, S. The statistical mechanics of the ionic equilibrium of water: a computer simulation study. J. Chem. Phys. 88, 5850–5856 (1988).
    Article ADS CAS Google Scholar
  18. Halley, J. W., Rustad, J. R. & Rahman, A. Apolarizable, dissociating molecular dynamics model for liquid water. J. Chem. Phys. 98, 4110–4119 (1993).
    Article ADS CAS Google Scholar
  19. Tuñón, I., Silla, E. & Bertrán, J. Proton solvation in liquid water. An ab initio study using the continuum model. J. Phys. Chem. 97, 5547–5552 (1993).
    Article Google Scholar
  20. Laria, D., Ciccotti, G., Ferrario, M. & Kapral, R. Activation free energy for proton transfer in solution. Chem. Phys. 180, 181–189 (1994).
    Article CAS Google Scholar
  21. Komatsuzaki, T. & Ohmine, I. Energetics of proton transfer in liquid water. I. Ab initio study for origin of many-body interaction and potential energy surfaces. Chem. Phys. 180, 239–269 (1994).
    Article CAS Google Scholar
  22. Wei, D. & Salahub, D. R. Hydrated proton clusters and solvent effects on the proton transfer barrier: adensity functional study. J. Chem. Phys. 101, 7633–7643 (1994).
    Article ADS CAS Google Scholar
  23. Tuckerman, M., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH− ions in water. J. Phys. Chem. 99, 5749–5752 (1995); Abinitio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103, 150–161 (1995).
    Article CAS Google Scholar
  24. Lobaugh, J. & Voth, G. A. The quantum dynamics of an excess proton in water. J. Chem. Phys. 104, 2056–2069 (1996).
    Article ADS CAS Google Scholar
  25. Ando, K. & Hynes, J. T. Molecular mechanism of HCl acid ionization in water: ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101, 10464–10478 (1997).
    Article CAS Google Scholar
  26. Schmidt, R. G. & Brickmann, J. Molecular dynamics simulation of the proton transport in water. Ber. Bunsenges. Phys. Chem. 101, 1816–1827 (1997).
    Article CAS Google Scholar
  27. Sagnella, D. E. & Tuckerman, M. E. An empirical valence bond model for proton transfer in water. J.Chem. Phys. 108, 2073–2083 (1998).
    Article ADS CAS Google Scholar
  28. Vuilleumier, R. & Borgis, D. Quantum dynamics of an excess proton in water using an extended empirical valence-bond hamiltonian. J. Phys. Chem. B 102, 4261–4264 (1998).
    Article CAS Google Scholar
  29. Schmitt, U. W. & Voth, G. A. Multistate empirical valence bond model for proton transport in water. J.Phys. Chem. B 102, 5547–5551 (1998).
    Article CAS Google Scholar
  30. Billeter, S. R. & van Gunsteren, W. F. Protonizable water model for quantum dynamical simulations. J.Phys. Chem. A 102, 4669–4678 (1998).
    Article CAS Google Scholar
  31. Kochanski, E., Kelterbaum, R., Klein, S., Rohmer, M. M. & Rahmouni, A. Decades of theoretical work on protonated hydrates. Adv. Quantum Chem. 28, 273–291 (1997).
    Article ADS CAS Google Scholar
  32. Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature 392, 258–261 (1998).
    Article ADS CAS Google Scholar
  33. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995); Hydrogen bonds, water rotation and proton mobility. J. Chim. Phys. Phys.-Chim. Biol. 93, 1714–1736 (1996).
    Article ADS CAS Google Scholar
  34. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).
    Article ADS CAS Google Scholar
  35. Lee, C., Wang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
    Article ADS CAS Google Scholar
  36. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).
    Article ADS CAS Google Scholar
  37. Sprik, M., Hutter, J. & Parrinello, M. Ab initio molecular dynamics simulation of liquid water: comparison of three gradient-corrected density functionals. J. Chem. Phys. 105, 1142–1152 (1996).
    Article ADS CAS Google Scholar
  38. Ojamäe, L., Shavitt, I. & Singer, S. J. Potential models for simulations of the solvated proton in water. J. Chem. Phys. 109, 5547–5564 (1998).
    Article ADS Google Scholar

Download references