The nature of the hydrated excess proton in water (original) (raw)
References
de Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. Ann. Chim.LVIII, 54–74 (1806). Google Scholar
Atkins, P. W. Physical Chemistry 6th edn, Ch. 24.8, 741 (Oxford Univ. Press, (1998)). Google Scholar
Hückel, E. Theorie der Beweglichkeiten des Wasserstoff- und Hydroxylions in wässriger Lösung. Z. Elektrochem.34, 546–562 (1928). Google Scholar
Stearn, A. E. & Eyring, J. The deduction of reaction mechanisms from the theory of absolute rates. J.Chem. Phys.5, 113–124 (1937). ArticleADSCAS Google Scholar
Bernal, J. D. & Fowler, R. H. Atheory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys.1, 515–548 (1933). ArticleADSCAS Google Scholar
Wannier, G. Die Beweglichkeit des Wasserstoff- und Hydroxylions in wäßriger Lösung. Ann. Phys. (Leipz.)24, 545–590 (1935). ArticleADSCAS Google Scholar
Huggins, M. L. Hydrogen bridges in ice and liquid water. J. Phys. Chem.40, 723–731 (1936). ArticleCAS Google Scholar
Wicke, E., Eigen, M. & Ackermann, Th. Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung. Z. Phys. Chem. (N.F.)1, 340–364 (1954). Article Google Scholar
Eigen, M. Proton transfer, acid–base catalysis and enzymatic hydrolysis. Angew. Chem. Int. Edn Engl.3, 1–19 (1964). Article Google Scholar
Zundel, G. & Metzger, H. Energiebänder der tunnelnden Überschuß-Protenon in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O+2. Z. Physik. Chem. (N.F.)58, 225–245 (1968). ArticleCAS Google Scholar
Zundel, G. in The Hydrogen Bond—Recent Developments in Theory and Experiments. II. Structure and Spectroscopy (eds Schuster, P., Zundel, G. & Sandorfy, C.) 683–766 (North-Holland, Amsterdam, (1976)). Google Scholar
Marx, D. & Parrinello, M. Ab initio path-integral molecular dynamics. Z. Phys. B (Rapid Note)95, 143–144 (1994). ArticleADSCAS Google Scholar
Marx, D. & Parrinello, M. Ab initio path integral molecular dynamics: basic ideas. J. Chem. Phys.104, 4077–4082 (1996). ArticleADSCAS Google Scholar
Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J. Chem. Phys.104, 5579–5588 (1996). ArticleADSCAS Google Scholar
Cleland, W. W. & Kreevoy, M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science264, 1887–1890 (1994). ArticleADSCAS Google Scholar
Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science275, 817–820 (1997). ArticleCAS Google Scholar
Guissani, Y., Guillot, B. & Bratos, S. The statistical mechanics of the ionic equilibrium of water: a computer simulation study. J. Chem. Phys.88, 5850–5856 (1988). ArticleADSCAS Google Scholar
Halley, J. W., Rustad, J. R. & Rahman, A. Apolarizable, dissociating molecular dynamics model for liquid water. J. Chem. Phys.98, 4110–4119 (1993). ArticleADSCAS Google Scholar
Tuñón, I., Silla, E. & Bertrán, J. Proton solvation in liquid water. An ab initio study using the continuum model. J. Phys. Chem.97, 5547–5552 (1993). Article Google Scholar
Laria, D., Ciccotti, G., Ferrario, M. & Kapral, R. Activation free energy for proton transfer in solution. Chem. Phys.180, 181–189 (1994). ArticleCAS Google Scholar
Komatsuzaki, T. & Ohmine, I. Energetics of proton transfer in liquid water. I. Ab initio study for origin of many-body interaction and potential energy surfaces. Chem. Phys.180, 239–269 (1994). ArticleCAS Google Scholar
Wei, D. & Salahub, D. R. Hydrated proton clusters and solvent effects on the proton transfer barrier: adensity functional study. J. Chem. Phys.101, 7633–7643 (1994). ArticleADSCAS Google Scholar
Tuckerman, M., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH− ions in water. J. Phys. Chem.99, 5749–5752 (1995); Abinitio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys.103, 150–161 (1995). ArticleCAS Google Scholar
Lobaugh, J. & Voth, G. A. The quantum dynamics of an excess proton in water. J. Chem. Phys.104, 2056–2069 (1996). ArticleADSCAS Google Scholar
Ando, K. & Hynes, J. T. Molecular mechanism of HCl acid ionization in water: ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B101, 10464–10478 (1997). ArticleCAS Google Scholar
Schmidt, R. G. & Brickmann, J. Molecular dynamics simulation of the proton transport in water. Ber. Bunsenges. Phys. Chem.101, 1816–1827 (1997). ArticleCAS Google Scholar
Sagnella, D. E. & Tuckerman, M. E. An empirical valence bond model for proton transfer in water. J.Chem. Phys.108, 2073–2083 (1998). ArticleADSCAS Google Scholar
Vuilleumier, R. & Borgis, D. Quantum dynamics of an excess proton in water using an extended empirical valence-bond hamiltonian. J. Phys. Chem. B102, 4261–4264 (1998). ArticleCAS Google Scholar
Schmitt, U. W. & Voth, G. A. Multistate empirical valence bond model for proton transport in water. J.Phys. Chem. B102, 5547–5551 (1998). ArticleCAS Google Scholar
Billeter, S. R. & van Gunsteren, W. F. Protonizable water model for quantum dynamical simulations. J.Phys. Chem. A102, 4669–4678 (1998). ArticleCAS Google Scholar
Kochanski, E., Kelterbaum, R., Klein, S., Rohmer, M. M. & Rahmouni, A. Decades of theoretical work on protonated hydrates. Adv. Quantum Chem.28, 273–291 (1997). ArticleADSCAS Google Scholar
Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature392, 258–261 (1998). ArticleADSCAS Google Scholar
Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett.244, 456–462 (1995); Hydrogen bonds, water rotation and proton mobility. J. Chim. Phys. Phys.-Chim. Biol.93, 1714–1736 (1996). ArticleADSCAS Google Scholar
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098–3100 (1988). ArticleADSCAS Google Scholar
Lee, C., Wang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B37, 785–789 (1988). ArticleADSCAS Google Scholar
Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B43, 1993–2006 (1991). ArticleADSCAS Google Scholar
Sprik, M., Hutter, J. & Parrinello, M. Ab initio molecular dynamics simulation of liquid water: comparison of three gradient-corrected density functionals. J. Chem. Phys.105, 1142–1152 (1996). ArticleADSCAS Google Scholar
Ojamäe, L., Shavitt, I. & Singer, S. J. Potential models for simulations of the solvated proton in water. J. Chem. Phys.109, 5547–5564 (1998). ArticleADS Google Scholar