Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway (original) (raw)
References
Letterio, J. L. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol.16, 137–161 (1998). ArticleCAS Google Scholar
Czarnieki, C. W., Chiu, H. H., Wong, C. H., McCabe, S. M. & Palladino, M. A. Transforming growth factor-β1 modulates the expression of class II histocompatibility antigens on human cells. J. Immunol.140, 4217–4223 (1988). Google Scholar
Bauvois, B., Rouillard, D., Sanceau, J. & Wietzerbin, J. IFN-γ and transforming growth factor-β1 differently regulate fibronectin and laminin receptors of human differentiating monocytic cells. J. Immunol.148, 3912–3919 (1992). CASPubMed Google Scholar
Schmitt, E. et al. Thelper type I development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. Eur. J. Immunol.24, 793–798 (1994). ArticleCAS Google Scholar
Xiao, B. G., Zhang, G. X., Ma, C. G. & Link, H. Transforming growth factor-β1 (TGF-β1)-mediated inhibition of glial cell proliferation and down-regulation of intercellular adhesion molecule-1 (ICAM-1) are interrupted by interferon-γ (IFN-γ). Clin. Exp. Immunol.103, 475–481 (1996). ArticleCAS Google Scholar
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998). ArticleCAS Google Scholar
Massagué, J. TGFβ signal transduction. Annu. Rev. Biochem.67, 753–791 (1998). Article Google Scholar
Heldin, C.-H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature390, 465–471 (1997). ArticleADSCAS Google Scholar
Schindler, C. & Darnell, J. E. Transcriptional responses to polypeptide ligands: the Jak-Stat pathway. Annu. Rev. Biochem.64, 621–651 (1995). ArticleCAS Google Scholar
Hayashi, H. et al. The MAD-related protein Smad7 associated with the TGFβ receptor and functions as an antagonist of TGFβ signalling. Cell89, 1165–1173 (1997). ArticleCAS Google Scholar
Nakao, A. et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature389, 631–635 (1997). ArticleADSCAS Google Scholar
Muller, M. et al. The protein tyrosine kinase Jak1 complements defects in interferon-α/β and -γ signal transduction. Nature366, 129–135 (1993). ArticleADSCAS Google Scholar
Cácamo, J. et al. Type I receptors specify growth inhibitory and transcriptional responses to TGF-β and activin. Mol. Cell Biol.14, 3810–3821 (1994). Article Google Scholar
Chen, X., Rubock, M. J. & Whitman, M. Atranscriptional partner of MAD proteins in TGF-β signalling. Nature383, 691–696 (1996). ArticleADSCAS Google Scholar
Liu, F., Pouponnot, C. & Massagué, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional responses. Genes Dev.11, 3157–3167 (1997). ArticleCAS Google Scholar
Kretzschmar, M., Doody, J. & Massagué, J. Opposing BMP and EGF signalling pathway converge on the TGFβ family mediator Smad1. Nature389, 618–622 (1997). ArticleADSCAS Google Scholar
Sakatsume, M. et al. Interferon γ activation of Raf-1 is Jak1-dependent and p21ras-independent. J. Biol. Chem.273, 3021–3026 (1998). ArticleCAS Google Scholar
Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. Asynthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA92, 7686–7689 (1995). ArticleADSCAS Google Scholar
Muller, M. et al. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of the ISGF3 in the interferon-α and -γ signal transduction pathways. EMBO J.12, 4221–4228 (1993). ArticleCAS Google Scholar
Spittler, A. et al. Effects of 1 α,25-dihydroxyvitamin D3 and cytokines on the expression of MHC antigens, complement receptors and other antigens on human blood monocytes and U937 cells: role in cells differentiation, activation and phagocytosis. Immunology90, 286–293 (1997). ArticleCAS Google Scholar
Lee, K., Tanaka, M., Hatanaka, M. & Kuze, F. Reciprocal effects of epidermal growth factor and transforming growth factor and transforming growth factor β on the anchorage-dependent and -independent growth of A431 epidermoid carcinoma cells. Exp. Cell Res.173, 156–162 (1987). ArticleCAS Google Scholar
Kumar, R. & Mendelsohn, J. Growth regulation of A431 cells. Modulation of expression of transforming growth factor-α mRNA and 2′,5′-oligoadenylate synthetase activity. J. Biol. Chem.265, 4578–4582 (1990). CASPubMed Google Scholar
Souchelnytskyi, S. et al. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-β receptors. J. Biol. Chem.273, 25364–25370 (1998). ArticleCAS Google Scholar
Ohta, M., Greenberger, J. S., Anklesaria, P., Bassols, A. & Massagué, J. Two forms of transforming growth factor-β distinguished by multipotential hematopoietic progenitor cells. Nature329, 539–541 (1987). ArticleADSCAS Google Scholar
Zhang, Y., Feng, X.-H., Wu, R.-Y. & Derynck, R. Receptor-associated Mad homologues synergize as efectors of the TGFβ response. Nature383, 168–172 (1996). ArticleADSCAS Google Scholar
Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature383, 832–836 (1996). ArticleADSCAS Google Scholar
Tu, G. C., Cao, Q.-N., Zhou, F. & Israel, Y. Tetranucleotide GGGA motif in primary RNA transcripts. Novel target for antisense design. J. Biol. Chem.273, 25125–25131 (1998). ArticleCAS Google Scholar
Hata, A., Lagna, G., Massagué, J. & Hemmati-Brivanlou, A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev.12, 186–197 (1998). ArticleCAS Google Scholar
Massagué, J. Identification of receptors of type β transforming growth factor. Methods Enzymol.146, 174–195 (1987). Article Google Scholar