Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1 (original) (raw)

References

  1. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).
    Article ADS CAS PubMed Google Scholar
  2. Steeg, P. S. & Abrams, J. S. Cancer prognostics: Past, present and p27. Nature Med. 3, 152–154 (1997).
    Article CAS PubMed Google Scholar
  3. Hengst, L. & Reed, S. I. Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861–1864 (1996).
    Article ADS CAS PubMed Google Scholar
  4. Sheaff, R. J., Groudine, M., Gordon, M., Roberts, J. M. & Clurman, B. E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478 (1997).
    Article CAS PubMed Google Scholar
  5. Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 16, 5334–5344 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  6. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).
    Article ADS CAS PubMed Google Scholar
  7. Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D. & Amati, B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 15, 6595–6604 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  8. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).
    Article CAS PubMed Google Scholar
  9. Mal, A. et al. Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFβ-treated cells. Nature 380, 262–265 (1996).
    Article ADS CAS PubMed Google Scholar
  10. Claret, F. X. et al. Anew group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383, 453–457 (1996).
    Article ADS CAS PubMed Google Scholar
  11. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).
    Article CAS PubMed Google Scholar
  12. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cells 78, 59–66 (1994).
    Article CAS Google Scholar
  13. Hofmann, K. & Bucher, P. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23, 204–205 (1998).
    Article CAS PubMed Google Scholar
  14. Asano, K. et al. Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J. Biol. Chem. 272, 27042–27052 (1997).
    Article CAS PubMed Google Scholar
  15. Matsuoka, S. et al. p57Kip2, a structurally distinct member of the p21Cip1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).
    Article CAS PubMed Google Scholar
  16. Ogawa, H., Inouye, S., Tsuji, F. I., Yasuda, K. & Umesono, K. Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc. Natl Acad. Sci. USA 92, 11899–11903 (1995).
    Article ADS CAS PubMed PubMed Central Google Scholar
  17. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).
    Article CAS PubMed Google Scholar
  18. Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320–6324 (1994).
    CAS PubMed Google Scholar
  19. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311 (1997).
    Article ADS CAS PubMed Google Scholar
  20. Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. & Nishida, E. Anovel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase.. J. Biol. Chem. 272, 32642–32648 (1997).
    Article CAS PubMed Google Scholar
  21. Coats, S., Flanagan, W. M., Nourse, J. & Roberts, J. M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272, 877–880 (1996).
    Article ADS CAS PubMed Google Scholar
  22. Seeger, M. et al. Anovel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 12, 469–478 (1998).
    Article CAS PubMed Google Scholar
  23. Wei, N. et al. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr. Biol. 8, 919–922 (1998).
    Article CAS PubMed Google Scholar
  24. Glickman, M. H. et al. Asubcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).
    Article CAS PubMed Google Scholar
  25. Harper, J. W., Adami, G., Wei, N., Keyomarsi, K. & Elledge, S. J. The 21 kd Cdk interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).
    Article CAS PubMed Google Scholar
  26. Hirai, H., Roussel, M. F., Kato, J.-y., Ashmun, R. A. & Sherr, C. J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 15, 2672–2681 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  27. Akamatsu, E., Tanaka, T. & Kato, J.-y. Transcription factor E2F and cyclin E/cdk2 complex cooperate to induce chromosomal DNA replication in Xenopus oocytes. J. Biol. Chem. 273, 16494–16500 (1998).
    Article CAS PubMed Google Scholar
  28. Kato, J.-y., Matsushime, H., Hiebert, S. W., Ewen, M. E. & Sherr, C. J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase, CDK4. Genes Dev. 7, 331–342 (1993).
    Article CAS PubMed Google Scholar
  29. Tanaka, M. & Herr, W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375–386 (1990).
    Article CAS PubMed Google Scholar
  30. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).
    Article CAS PubMed PubMed Central Google Scholar

Download references