Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis (original) (raw)

References

  1. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: An integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).
    Article CAS Google Scholar
  2. Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: A progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).
    Article CAS Google Scholar
  3. van der Bliek, A. M. Functional diversity in the dynamin family. Trends Cell Biol. 9, 96–102 (1999).
    Article CAS Google Scholar
  4. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676–6683 (1997).
    Article CAS Google Scholar
  5. Hinshaw, J. E. & Schmid, S. L. Dynamin self assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).
    Article ADS CAS Google Scholar
  6. Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self assembly stimulates its GTPase activity. J.Biol. Chem. 271, 22310–22314 (1996).
    Article CAS Google Scholar
  7. Lin, H. C. & Gilman, A. G. Regulation of dynamin I GTPase activity by G protein betagamma subunits and phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 271, 27979–27982 (1996).
    Article CAS Google Scholar
  8. Tuma, P. L., Stachniak, M. C. & Collins, C. A. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. J. Biol. Chem. 268, 17240–17246 (1993).
    CAS PubMed Google Scholar
  9. Barylko, B. et al. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. J. Biol. Chem. 273, 3791–3797 (1998).
    Article CAS Google Scholar
  10. Kosaka, T. & Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14, 207–225 (1983).
    Article CAS Google Scholar
  11. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature 374, 186–190 (1995).
    Article ADS CAS Google Scholar
  12. Sweitzer, S. & Hinshaw, J. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).
    Article CAS Google Scholar
  13. Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).
    Article CAS Google Scholar
  14. Warnock, D. E. & Schmid, S. L. Dynamin GTPase, a force-generating molecular switch. Bioessays 18, 885–893 (1996).
    Article CAS Google Scholar
  15. Liu, J. P. & Robinson, P. J. Dynamin and endocytosis. Endocrine Rev. 16, 590–607 (1995).
    CAS Google Scholar
  16. McNiven, M. A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–607 (1998).
    Article CAS Google Scholar
  17. Shpetner, H. S. & Vallee, R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).
    Article ADS CAS Google Scholar
  18. Tuma, P. L. & Collins, C. A. Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically crosslinked dynamin molecules. J. Biol. Chem. 270, 26707–26714 (1995).
    Article CAS Google Scholar
  19. Schmid, S. L. & Smythe, E. Stage-specific assays for coated pit formation and coated vesicle budding in vitro. J. Cell Biol. 114, 869–880 (1991).
    Article CAS Google Scholar
  20. Carter, L. L., Redelmeier, T. E., Woollenweber, L. A. & Schmid, S. L. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediate endocytosis. J. Cell Biol. 120, 37–45 (1993).
    Article CAS Google Scholar
  21. Maeda, K., Nakata, T., Noda, Y., Sato-Yoshitake, R. & Hirokawa, N. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol. Biol. Cell 3, 1181–1194 (1992).
    Article CAS Google Scholar
  22. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoraluminate and GTPase activation proteins. Science 273, 115–117 (1996).
    Article ADS CAS Google Scholar
  23. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem. 272, 28030–28035 (1997).
    Article CAS Google Scholar
  24. Scheffzek, K., Ahmadian, R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement active site. Trends Biochem. Sci. 23, 257–262 (1998).
    Article CAS Google Scholar
  25. Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565–578 (1993).
    Article CAS Google Scholar
  26. Melen, K. et al. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J. Biol. Chem. 267, 25898–25907 (1992).
    CAS PubMed Google Scholar
  27. Schwemmle, M., Richter, M. F., Hermann, C., Nassar, N. & Staeheli, P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J. Biol. Chem. 270, 13518–13523 (1995).
    Article CAS Google Scholar
  28. Warnock, D. E., Terlecky, L. J. & Schmid, S. L. Dynamin GTPase is stimulated by crosslinking through the C terminal proline rich domain. EMBO J. 14, 1322–1328 (1995).
    Article CAS Google Scholar
  29. Gilbert, A., Paccaud, J. P. & Carpentier, J. L. Direct measurement of clathrin-coated vesicle formation using a cell-free assay. J. Cell Sci. 110, 3105–3115 (1997).
    CAS PubMed Google Scholar
  30. Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).
    Article CAS Google Scholar
  31. Foster-Barber, A. & Bishop, J. M. Src interacts with dynamin and synapsin in neuronal cells. Proc. Natl Acad. Sci. USA 95, 4673–4677 (1998).
    Article ADS CAS Google Scholar
  32. Earnest, S., Khokhlatchev, A., Albanesi, J. P. & Barylko, B. Phosphorylation of dynamin by ERK2 inhibits the dynamin-microtubule interaction. FEBS Lett. 396, 62–66 (1996).
    Article CAS Google Scholar
  33. Fersht, A. Enzyme Structure and Mechanism(Freeman, New York, (1995).
    Google Scholar
  34. van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).
    Article CAS Google Scholar
  35. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).
    Article ADS CAS Google Scholar
  36. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).
    Article ADS CAS Google Scholar
  37. Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. Aputative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61, 1063–1074 (1990).
    Article CAS Google Scholar
  38. Gammie, A. E., Kurihar, K. L., Vallee, R. B. & Rose, M. D. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. J. Cell Biol. 130, 553–566 (1995).
    Article CAS Google Scholar
  39. Otsuga, D. et al. The dynamin-like GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. 143, 333–349 (1998).
    Article CAS Google Scholar
  40. Aebi, M. et al. cDNA structure and regulation of two interferon-induced human Mx proteins. Mol. Cell. Biol. 9, 5062–5072 (1989).
    Article CAS Google Scholar
  41. Gu, X. & Verma, D. P. Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J. 15, 695–704 (1996).
    Article CAS Google Scholar

Download references