Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water (original) (raw)

References

  1. Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133 , 13–31 (1991).
    Article ADS Google Scholar
  2. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).
    Article ADS CAS Google Scholar
  3. Moynihan, C. T. Correlation between the width of the glass transition and the temperature dependence of the viscosity in high Tgglasses. J. Am. Ceram. Soc. 76, 1081–1087 (1993).
    Article CAS Google Scholar
  4. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).
    Article CAS Google Scholar
  5. Angell, C. A. & Tucker, J. C. Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational ‘ideal’ glass transition temperatures. J. Phys. Chem. 78, 278– 281 (1974).
    Article CAS Google Scholar
  6. Xu, Y. & Heppler, L. Calorimetric investigations of crystalline, molten, and supercooled Ca(NO3)2·4H2O and of concentrated Ca(NO3)2(aq). J. Chem. Thermodyn. 25, 91–97 ( 1993).
    Article CAS Google Scholar
  7. Angell, C. A. et al. Liquid fragility and the glass transition in water and aqueous solutions. Int. J. Food Sci. 22, 115– 142 (1994).
    Google Scholar
  8. Takahara, S., Yamamuro, O. & Matsuo, T. Calorimetric study of 3-bromopentane: correlation between structural relaxation time and configurational entropy. J. Phys. Chem. 99, 9589–9592 ( 1995).
    Article CAS Google Scholar
  9. Richert, R. & Angell, C. A. Dynamics of glassforming liquids. IV: On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).
    Article ADS CAS Google Scholar
  10. Chang, S. S. & Bestul, A. b. Heat capacities of selenium crystal (trigonal), glass, and liquid from 5 to 360 K. J. Chem. Thermodyn. 6, 325–344 ( 1974).
    Article CAS Google Scholar
  11. Gibbs, J. H. in Modern Aspects of the Vitreous State(ed. McKenzie, J. D.) Ch. 7 (Butterworths, London, (1960).
    Google Scholar
  12. Goldstein, M. Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition. J. Phys. Chem. 77, 667– 673 (1973).
    Article CAS Google Scholar
  13. Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).
    Article ADS CAS Google Scholar
  14. Angell, C. A., Shuppert, J. & Tucker, J. C. Anomalous properties of supercooled water: heat capacity, expansivity, and PMR chemical shift from 0 to −38 °C. J. Phys. Chem. 77, 3092–3099 (1973).
    Article CAS Google Scholar
  15. Donth, E. The size of cooperative rearranging region at the glass transition. J. Non-Cryst. Solids 53, 325–330 (1982).
    Article ADS CAS Google Scholar
  16. Hodge, I. M. Comment on the fragility of liquids—a brief critique. J. Non-Cryst. Solids 202, 164–172 (1997).
    Article ADS Google Scholar
  17. Angell, C. A. Simple glassformers: their definition, fragilities and landscape excitation profiles. J. Phys., Cond. Matter 11, 75– 94 (1999).
    Article Google Scholar
  18. Angell, C. A. & Sare, E. J. Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970).
    Article ADS CAS Google Scholar
  19. Angell, C. A. & Tucker, J. C. Heat capacity changes in glass-forming aqueous solutions, and the glass transition in vitreous water. J. Phys. Chem. 84, 268–272 (1980).
    Article CAS Google Scholar
  20. Johari, G., Hallbrucker, A. & Mayer, E. The glass-liquid transition of hyperquenched water. Nature 330, 552–553 (1987).
    Article ADS CAS Google Scholar
  21. Hallbrucker, A., Mayer, E. & Johari, G. P. Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous water. A comparison with hyperquenched glassy water. J. Phys. Chem. 93, 4986– 4990 (1989).
    Article CAS Google Scholar
  22. Angell, C. A., Clarke, J. H. R. & Woodcock, L. V. Interaction potentials and glass formation: A survey of computer experiments. Adv. Chem. Phys. 48, 397–453 (1981).
    CAS Google Scholar
  23. Hofer, K., Mayer, E. & Johari, G. P. Glass-liquid transition of water and ethylene glycol solution in poly(2-hydroxyethyl methacrylate) hydrogel. J. Phys. Chem. 94, 2689–2696 ( 1990).
    Article CAS Google Scholar
  24. Speedy, R. J. & Angell, C. A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at 45 °C. J. Chem. Phys. 65, 851– 858 (1976).
    Article ADS CAS Google Scholar
  25. Sastry, S., Debenedetti, P. G., Sciortino, F. & Stanley, H. E. Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E 53, 6144– 6154 (1996).
    Article ADS CAS Google Scholar
  26. Thompson, M. O., Galvin, G. J. & Mayer, J. W. Melting temperatures and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 52, 2360–2363 ( 1984).
    Article ADS CAS Google Scholar
  27. Angell, C. A. & Borick, S. Comment on “Structure of Supercooled Liquid Silicon” by Ansell et al. J. Phys., Cond. Matter (in the press).
  28. Brückner, R. Metastable equilibrium density of hydroxyl-free synthetic vitreous silica. J. Non-Cryst. Solids 5, 281– 285 (1971).
    Article ADS Google Scholar
  29. Rebelo, L. P. N., Debenedetti, P. G. & Sastry, S. Singularity-free interpretation of the thermodynamics of supercooled water. II. Thermal and volumetric behavior. J. Chem. Phys. 109, 626–633 ( 1998).
    Article ADS CAS Google Scholar
  30. Starr, F., Angell, C. A., Speedy, R. J. & Stanley, H. E. Entropy and dynamic properties of water at 1 atm in the “experimentally-inaccessible” region between 150K and 236K Phys. Rev. Lett. (submitted).
  31. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).
    Article ADS CAS Google Scholar
  32. Angell, C. A. Entropy and fragility in supercooling liquids. J. Res. NIST 102, 171–185 (1997).
    Article CAS Google Scholar
  33. Angell, C. A., Finch, E. D., Woolf, L. A. & Bach, P. Spin-echo diffusion coefficients of water to 2380 bar and −20 °C. J. Chem. Phys. 65, 3063– 3066 (1976).
    Article ADS CAS Google Scholar
  34. Allegra, J. C., Stein, A. & Allen, G. F. Tracer diffusion and shear viscosity for the system isobutyric acid-water near the critical mixing point. J. Chem. Phys. 55, 1716–1720 ( 1971).
    Article ADS CAS Google Scholar
  35. Smith, R. S., Huang, C. & Kay, B. D. Evidence for molecular translational diffusion, during the crystallization of amorphous solid water. J. Phys. Chem. B 101, 6123–6126 ( 1997).
    Article CAS Google Scholar
  36. Smith, R. S. & Kay, B. D. Evidence for the existence of supercooled liquid water at 150 K. Nature 398(in the press)
  37. Roberts, C. J., Karayiannekis, C. & Debenedetti, P. G. Liquid-liquid immiscibility in single-component network-forming fluids: Model calculations and implications for polyamorphism in water. Ind. Eng. Chem. Res. 37, 3012–3022 (1998).
    Article CAS Google Scholar

Download references