A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain (original) (raw)
Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature377, 351–354 (1995). ArticleADSCAS Google Scholar
Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature387, 288–292 (1997). ArticleADSCAS Google Scholar
Shen, J. et al. Skeletal and CNS defects in presenilin-1-deficient mice. Cell89, 629–639 (1997). ArticleCAS Google Scholar
De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature391, 387–390 (1998). ArticleADSCAS Google Scholar
Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA95, 8108–8112 (1998). ArticleADSCAS Google Scholar
Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterdimeric receptor on the plasma membrane. Cell90, 281–291 (1997). ArticleCAS Google Scholar
Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature393, 382–386 (1998). ArticleADSCAS Google Scholar
Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell93, 649–660 (1998). ArticleCAS Google Scholar
Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr. Biol.8, 771–774 (1998). ArticleCAS Google Scholar
Lendon, C., Ashall, F. & Goate, A. Exploring the etiology of Alzheimer's disease using molecular genetics. J. Am. Med. Assoc.277, 825–831 (1997). ArticleCAS Google Scholar
Levitan, D. & Greenwald, I. Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development125, 3599–3606 (1998). CASPubMed Google Scholar
De Strooper, B. et al. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J.14, 4932–4938 (1995). ArticleCAS Google Scholar
Kopan, R., Schroeter, E. H., Weintraub, H. & Nye, J. S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl Acad. Sci. USA93, 1683–1688 (1996). ArticleADSCAS Google Scholar
Tischer, E. & Cordell, B. Beta-amyloid precursor protein. Location of transmembrane domain and specificity of gamma-secretase cleavage. J. Biol. Chem.271, 21914–21919 (1996). ArticleCAS Google Scholar
Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell89, 331–340 (1997). ArticleCAS Google Scholar
Ross, S. L. et al. Amyloid precursor protein processing in sterol regulatory element-binding protein site 2 protease-deficient Chinese hamster ovary cells. J. Biol. Chem.273, 15309–15312 (1998). ArticleCAS Google Scholar
Wolfe, M. S. et al. Asubstrate-based difluoro ketone selectively inhibits Alzheimer's gamma-secretase activity. J. Med. Chem.41, 6–9 (1998). ArticleCAS Google Scholar
Higaki, J., Quon, D., Zhong, Z. & Cordell, B. Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neutron14, 651–659 (1995). CAS Google Scholar
Citron, M. et al. Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc. Natl Acad. Sci. USA93, 13170–13175 (1996). ArticleADSCAS Google Scholar
Klafki, H., Abramowski, D., Swoboda, R., Paganetti, P. A. & Staufenbiel, M. The carboxyl termini of beta-amyloid peptides 1–40 and 1–42 are generated by distinct gamma-secretase activities. J. Biol. Chem.271, 28655–28659 (1996). ArticleCAS Google Scholar
Yamazaki, T., Haass, C., Saido, T. C., Omura, S. & Ihara, Y. Specific increase in amyloid beta-protein 42 secretion ratio by calpain inhibition. Biochemistry36, 8377–8383 (1997). ArticleCAS Google Scholar
Wolfe, M. S. et al. Peptidomimetic probes and molecular modelling suggest Alzheimer's γ-secretase is an intra-membrane cleaving aspartyl protease. Biochemistry (in the press).
Ray, W. J. et al. Evidence for a physical interaction between presenilin and Notch. Proc. Natl Acad. Sci. USA96, 3263–3268 ((1999). ArticleADSCAS Google Scholar
Weidermann, A. et al. Formation of stable complexes between two Alzheimer's disease gene products: presenilin-2 and beta-amyloid precursor protein. Nature Med.3, 328–332 (1997). Article Google Scholar
Xia, W., Zhang, J., Perez, R., Koo, E. H. & Selkoe, D. J. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc. Natl Acad. Sci. USA94, 8208–8213 (1997). ArticleADSCAS Google Scholar
Saftig, P. & de Strooper, B. Downregulation of PS1 expression in neurons decreases beta-amyloid production: a biochemical link between the two major familial Alzheimer's disease genes. Mol. Psychiat.3, 287–289 (1998). ArticleCAS Google Scholar
Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell1, 47–57 (1997). ArticleCAS Google Scholar
Varnum-Finney, B. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood91, 4084–4091 (1998). CASPubMed Google Scholar
Robey, E. & Fowlkes, B. J. The αβ versus αδ T-cell lineage choice. Curr. Opin. Immunol.10, 181–187 (1998). ArticleCAS Google Scholar
Chan, Y. M. & Jan, Y. N. Roles for proteolysis and trafficking in notch maturation and signal transduction. Cell94, 423–426 (1998). ArticleCAS Google Scholar