Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter (original) (raw)

References

  1. Dickinson, T. A., White, J., Kauer, J. S. & White, D. R. Achemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 687–700 (1996).
    Article ADS Google Scholar
  2. Lonergan, M. C. et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mat. 8, 2298 –2312 (1996).
    Article CAS Google Scholar
  3. Hellinga, H. W. & Marvin, J. S. Protein engineering and the development of generic biosensors. Trends Biotechnol. 16, 183–189 (1998).
    Article CAS Google Scholar
  4. Czarnik, A. W. Asense for landmines. Nature 394, 417– 418 (1998).
    Article ADS CAS Google Scholar
  5. Crooks, R. M. & Ricco, A. J. Special issue on chemical sensors. Acc. Chem. Res. 31, 199– 324 (1998).
    Article Google Scholar
  6. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 ( 1997).
    Article CAS Google Scholar
  7. Gouaux, E. α-Hemolysin from Staphylococcus aureus : an archetype of β-barrel, channel-forming toxins. J. Struct. Biol. 121, 110–122 (1998).
    Article CAS Google Scholar
  8. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859– 1865 (1996).
    Article ADS CAS Google Scholar
  9. Krasilnikov, O. V., Sabirov, R. Z., Ternovsky, V. I., Merzliak, P. G. & Muratkhodjaev, J. N. Asimple method for the determination of the pore radius of ions channels in planar lipid bilayer membranes. FEMS Microbiol. Immunol. 105 , 93–100 (1992).
    Article Google Scholar
  10. Bezrukov, S. M., Vodyanoy, I., Brutyan, R. A. & Kasianowicz, J. J. Dynamics and free energy of polymer partitioning into a nanoscale pore. Macromolecules 29, 8517–8522 (1996).
    Article ADS CAS Google Scholar
  11. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770– 13773 (1996).
    Article ADS CAS Google Scholar
  12. Rekharsky, M. V. & Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875– 1917 (1998).
    Article CAS Google Scholar
  13. Colquhoun, D. & Hawkes, A. G. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Phil. Trans. R. Soc. Lond. B 300, 1– 59 (1982).
    Article ADS CAS Google Scholar
  14. Inoue, Y. et al. Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalphy–entropy compensation. J. Am. Chem. Soc. 115, 475 –481 (1993).
    Article CAS Google Scholar
  15. Lucchesi, K., Ravindran, A., Young, H. & Moczydlowski, E. Analysis of the blocking activity of charybdotoxin homologs and iodinated derivatives against Ca2+-activated K+ channels. J. Membr. Biol. 109, 269–281 (1989).
    Article CAS Google Scholar
  16. Bianchet, M. A. et al. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nature Struct. Biol. 3, 934–939 ( 1996).
    Article CAS Google Scholar
  17. Chen, H., Weiner, W. S. & Hamilton, A. D. Recognition of neutral species with synthetic receptors. Curr. Opin. Chem. Biol. 1, 458– 466 (1997).
    Article CAS Google Scholar
  18. Arduini, A., Casnati, A., Pochini, A. & Ungaro, R. Recognition of cationic species with synthetic receptors. Curr. Opin. Chem. Biol. 1, 467–474 (1997).
    Article CAS Google Scholar
  19. Beer, P. D. & Schmitt, P. Molecular recognition of anions by synthetic receptors. Curr. Opin. Chem. Biol. 1, 475–482 (1997).
    Article CAS Google Scholar
  20. Bayley, H. Building doors into cells. Sci. Am. 277, (Sept.) 62–67 (1997).
    Article CAS Google Scholar
  21. Hartgerink, J. D., Clark, T. D. & Ghadiri, M. R. Peptide nanotubes and beyond. Chem. Eur. J. 4, 1367–1372 ( 1998).
    Article CAS Google Scholar
  22. Schmid, B., Maveyraud, L., Kromer, M. & Schulz, G. E. Porin mutants with new channel properties. Protein Sci. 7, 1603–1611 (1998).
    Article CAS Google Scholar
  23. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).
    Article ADS CAS Google Scholar
  24. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 ( 1998).
    Article ADS CAS Google Scholar
  25. Cornell, B. A. et al. Abiosensor that uses ion-channel switches. Nature 387, 580–583 ( 1997).
    Article ADS CAS Google Scholar
  26. Bhakdi, S., Füssle, R. & Tranum-Jensen, J. Staphylococcal α-toxin: oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate micelles. Proc. Natl Acad. Sci. USA 78, 5475–5479 (1981).
    Article ADS CAS Google Scholar
  27. Walker, B. J., Krishnasastry, M., Zorn, L., Kasianowicz, J. J. & Bayley, H. Functional expression of the α-hemolysin of Staphylococcus aureus in intact Escherichia coli and in cell lysates. J. Biol. Chem. 267, 10902–10909 (1992).
    CAS PubMed Google Scholar
  28. Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc. Natl Acad. Sci. USA 69, 3561– 3566 (1972).
    Article ADS CAS Google Scholar
  29. Christopher, J. A. SPOCK: The Structural Properties Observation and Calculation Kit (Program Manual) (Center for Macromolecular Design, Texas A&M Univ., College Station, 1998).

Download references