Calmodulin supports both inactivation and facilitation of L-type calcium channels (original) (raw)

References

  1. Bers, D. M. Excitation–Contraction Coupling and Cardiac Contractile Force (Kluwer Academic, Dordrecht, (1991).
    Google Scholar
  2. Artalejo, C. R., Adams, M. E. & Fox, A. P. Three types of Ca2+ channels trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76 ( 1994).
    Article ADS CAS Google Scholar
  3. Murphy, T. H., Worley, P. F. & Baraban, J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635 (1991).
    Article CAS Google Scholar
  4. Eckert, R. & Chad, J. E. Inactivation of Ca2+ channels. Prog. Biophys. Mol Biol. 44, 215 –267 (1984).
    Article CAS Google Scholar
  5. Noble, S. & Shimoni, Y. The calcium and frequency dependence of the slow inward current ‘staircase’ in frog atrium. J. Physiol. 310, 57–75 ( 1981).
    Article CAS Google Scholar
  6. Gurney, A. M., Charnet, P., Pye, J. M. & Nargeot, J. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature 341, 65– 68 (1989).
    Article ADS CAS Google Scholar
  7. Zygmunt, A. C. & Maylie, J. Stimulation-dependent facilitation of the high threshold calcium current in guinea-pig ventricular myocytes. J. Physiol. 428, 653–671 (1990).
    Article CAS Google Scholar
  8. McDonald, T. F., Pelzer, S., Trautwein, W. & Pelzer, D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74, 365– 507 (1994).
    Article CAS Google Scholar
  9. Imredy, J. P. & Yue, D. T. Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels. Neuron 12, 1301–1318 (1994).
    Article CAS Google Scholar
  10. Soldatov, N. M., Zühlke, R. D., Bouron, A. & Reuter, H. Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40-42 in α1Csubunit in the kinetics and Ca2+-dependence of inactivation. J. Biol. Chem. 272, 3560–3566 (1997).
    Article CAS Google Scholar
  11. Babitch, J. Channel hands. Nature 346, 321– 322 (1990).
    Article ADS CAS Google Scholar
  12. De Leon, M. et al. Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 270, 1502–1506 (1995).
    Article ADS CAS Google Scholar
  13. Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 11, 331– 340 (1997).
    Article CAS Google Scholar
  14. Zühlke, R. D. & Reuter, H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1Csubunit. Proc. Natl Acad. Sci. USA 95, 3287–3294 (1998).
    Article ADS Google Scholar
  15. Zhou, J. M. et al. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+-binding function of a motif with similarity to Ca2+-binding domains. Proc. Natl Acad. Sci. USA 94, 2301–2305 (1997).
    Article ADS CAS Google Scholar
  16. Bernatchez, G., Talwar, D. & Parent, L. Mutations in the EF-hand motif impair the inactivation of barium currents of the cardiac α1Cchannel. Biophys. J. 75, 1727–1739 (1998).
    Article CAS Google Scholar
  17. Soldatov, N. M. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts. Proc. Natl Acad. Sci. USA 89, 4628–4632 (1992).
    Article ADS CAS Google Scholar
  18. Hess, P., Lansman, J. B. & Tsien, R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88, 293–319 (1986).
    Article CAS Google Scholar
  19. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503– 507 (1998).
    Article ADS CAS Google Scholar
  20. Kincaid, R. L., Vaughan, M., Osborne, J. C. J & Tkachuk, V. A. Ca2+-dependent interaction of 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I. J. Biol. chem. 257, 10638–10643 (1982).
    CAS PubMed Google Scholar
  21. Höfer, G. F. et al. Intracellular Ca2+ inactivates L-type Ca2+ channels with a Hill coefficient of ∼1 and an inhibition constant of ∼4 µM by reducing channel's open probability. Biophys. J. 73, 1857–1865 (1997).
    Article ADS Google Scholar
  22. Haack, J. A. & Rosenberg, R. L. Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers. Biophys. J. 66, 1051–1060 ( 1994).
    Article CAS Google Scholar
  23. Zhang, S., Ehlers, M. D., Bernhardt, J. P., Su, C. T. & Huganir, R. L. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453 (1998).
    Article CAS Google Scholar
  24. Liu, M., Chen, T., Ahamed, B., Li, J. & Yau, K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348– 1354 (1994).
    Article ADS CAS Google Scholar
  25. Vorherr, T. et al. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry 29, 355–365 (1990).
    Article CAS Google Scholar
  26. Soldatov, N. M., Bouron, A. & Reuter, H. Different voltage-dependent inhibition by dihydropyridines of human Ca2+ channel splice variants. J. Biol. Chem. 270, 10540–10543 ( 1995).
    Article CAS Google Scholar
  27. Singer, D. et al. The role of the subunits in the function of the calcium channel. Science 253, 1553–1557 (1991).
    Article ADS CAS Google Scholar
  28. Ruth, P. et al. Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245, 1115–1118 (1989).
    Article ADS CAS Google Scholar
  29. Zühlke, R. D., Bouron, A., Soldatov, N. M. & Reuter, H. Ca2+ channel sensitivity towards the blocker isradipine is affected by alternative splicing of the human α1Csubunit gene. FEBS Lett. 427, 220– 224 (1998).
    Article Google Scholar

Download references