Clathrin self-assembly is mediated by a tandemly repeated superhelix (original) (raw)

References

  1. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).
    Article CAS Google Scholar
  2. Ybe, J. A.et al. Clathrin self-assembly is regulated by three light chain residues controlling the formation of critical salt bridges. EMBO J. 17, 1297–1303 (1998).
    Article CAS Google Scholar
  3. Näthke, I. S.et al. Folding and trimerization of clathrin subunits at the triskelion hub. Cell 68, 899–910 (1992).
    Article Google Scholar
  4. Liu, S. H., Wong, M. L., Craik, C. S. & Brodsky, F. M. Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. Cell 83, 257–267 (1995).
    Article CAS Google Scholar
  5. Smith, C. J., Grigorieff, N. & Pearse, B. M. F. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 (1998).
    Article CAS Google Scholar
  6. Chothia, C., Levitte, M. & Richardson, D. Helix to helix packing in proteins. J. Mol. Biol. 145, 215–250 (1981).
    Article CAS Google Scholar
  7. Raag, R., Appelt, K., Xuong, N. H. & Banaszak, L. Structure of the lamprey yolk lipid–protein complex lipovitellin–phosvitin at 2.8 Å resolution. J. Mol. Biol. 200, 553–569 (1988).
    Article CAS Google Scholar
  8. Thunnissen, A.-M.et al. Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367, 750–753 (1994).
    Article ADS CAS Google Scholar
  9. Strickland, C. L.et al. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry 37, 16601–16611 (1998).
    Article CAS Google Scholar
  10. Peters, J. W., Stowell, M. H. & Rees, D. C. Aleucine-rich repeat variant with a novel repetitive protein structural motif. Nature Struct. Biol. 3, 991–994 (1996).
    Article CAS Google Scholar
  11. Huber, A. H., Nelson, W. J. & Weis, W. I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90, 871–882 (1997).
    Article CAS Google Scholar
  12. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94, 193–204 (1998).
    Article CAS Google Scholar
  13. Groves, M. R.et al. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999).
    Article CAS Google Scholar
  14. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).
    CAS PubMed Google Scholar
  15. Das, A. K., Cohen, P. T. W. & Barford, D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J. 17, 1192–1199 (1998).
    Article CAS Google Scholar
  16. ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an α zigzag linker. Cell 95, 563–573 (1998).
    Article CAS Google Scholar
  17. Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. Aflexible motif search technique based on generalized profiles. Comput. Chem. 20, 30–23 (1996).
    Article Google Scholar
  18. Conibear, E. & Stevens, T. H. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404, 211–230 (1996).
    Article Google Scholar
  19. Nakamura, N., Hirata, A., Ohsumi, Y. & Wada, Y. Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 11344–11349 (1997).
    Article CAS Google Scholar
  20. Winkler, F. K. & Stanley, K. K. Clathrin heavy chain, light chain interactions. EMBO J. 2, 1393–1400 (1983).
    Article CAS Google Scholar
  21. Kirchhausen, T.et al. Clathrin light chains LCa and LCb are similar, polymorphic, and share repeated heptad motifs. Science 236, 320–326 (1987).
    Article ADS CAS Google Scholar
  22. Wilde, A.et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677–687 (1999).
    Article CAS Google Scholar
  23. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).
    Article CAS Google Scholar
  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS Google Scholar
  25. Terwilliger, T. C. Multiwavelength anomalous diffraction phasing of macromolecular structures: analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG program. Methods Enzymol. 276, 530–537 (1997).
    Article CAS Google Scholar
  26. Brünger, A. T.et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).
    Article Google Scholar
  27. Kleywegt, G. J. & Jones, T. A. Asuper position. ESF/CCP4 Newsletter 31, 9–14 (1994).
    Google Scholar
  28. Esnouf, M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model 15, 132–134 (1997).
    Article CAS Google Scholar
  29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar
  30. Merritt, E. A. & Murphy, M. E. P. RASTER3D version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).
    Article CAS Google Scholar

Download references