The MAPK kinase Pek1 acts as a phosphorylation-dependent molecular switch (original) (raw)

References

  1. Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197 (1995).
    Article CAS Google Scholar
  2. Nishida, E. & Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 (1993).
    Article CAS Google Scholar
  3. Levin, D. E. & Errede, B. The proliferation of MAP kinase signaling pathways in yeast. Curr. Biol. 7, 197–202 (1995).
    Article CAS Google Scholar
  4. Marshall, C. J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4, 82–89 (1994).
    Article CAS Google Scholar
  5. Toda, T.et al. The fission yeast pmk1+ gene encodes a novel mitogen-activated protein kinase homolog which regulates cell integrity and functions coordinately with the protein kinase C pathway. Mol. Cell. Biol. 16, 6752–6764 (1996).
    Article CAS Google Scholar
  6. Sugiura, R.et al. pmp1+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast. EMBO J. 17, 140–148 (1998).
    Article CAS Google Scholar
  7. Sengar, A. S., Markley, N. A., Marini, N. J. & Young, D. Mkh1, a MEK kinase required for cell wall integrity and proper response to osmotic and temperature stress in Schizosaccharomyces pombe. Mol. Cell. Biol. 17, 3508–3519 (1997).
    Article CAS Google Scholar
  8. Yoshida, T., Toda, T. & Yanagida, M. Acalcineurin-like gene ppb1+ in fission yeast: mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning. J. Cell Sci. 107, 1725–1735 (1994).
    CAS PubMed Google Scholar
  9. Crews, C. M., Alessandrini, A. & Erikson, R. L. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258, 478–480 (1992).
    Article ADS CAS Google Scholar
  10. Irie, K.et al. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13, 3076–3083 (1993).
    Article CAS Google Scholar
  11. Toda, T., Shimanuki, M. & Yanagida, M. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 5, 60–73 (1991).
    Article CAS Google Scholar
  12. Millar, J. B., Buck, V. & Wilkinson, M. G. Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9, 2117–2130 (1995).
    Article CAS Google Scholar
  13. Shiozaki, K. & Russell, P. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739–743 (1995).
    Article ADS CAS Google Scholar
  14. Kato, T.et al. Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett. 378, 207–212 (1996).
    Article CAS Google Scholar
  15. Zaitsevskaya, C. T. & Cooper, J. A. Spm1, a stress-activated MAP kinase that regulates morphogenesis in S. pompe. EMBO J. 16, 1318–1331 (1997).
    Article Google Scholar
  16. McLeod, M., Stein, M. & Beach, D. The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J. 6, 729–736 (1987).
    Article CAS Google Scholar
  17. Cook, J. G., Bardwell, L. & Thorner, J. Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390, 85–88 (1997).
    Article ADS CAS Google Scholar
  18. Madhani, H. D., Styles, C. A. & Fink, G. R. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673–684 (1997).
    Article CAS Google Scholar
  19. Murray, A. W. MAP kinases in meiosis. Cell 92, 157–159 (1998).
    Article CAS Google Scholar
  20. Ferrell, J. E. & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895–898 (1998).
    Article ADS CAS Google Scholar
  21. Rothstein, R. J. One-step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).
    Article CAS Google Scholar
  22. Keeney, J. B. & Boeke, J. D. Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136, 849–856 (1994).
    CAS PubMed PubMed Central Google Scholar
  23. Neiman, A. M. & Herskowitz, I. Reconstitution of a yeast protein kinase cascade in vitro: Activation of the yeast MEK homologue STE7 by STE11. Proc. Natl Acad. Sci. USA 91, 3398–3402 (1994).
    Article ADS CAS Google Scholar
  24. Zarzov, P., Mazzoni, C. & Mann, C. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J. 15, 83–91 (1996).
    Article CAS Google Scholar
  25. Beach, D., Piper, M. & Nurse, P. Construction of a Schizosaccharomyces pombe gene bank in a yeast bacterial shuttle vector and its use to isolate genes by complementation. Mol. Gen. Genet. 187, 326–329 (1982).
    Article CAS Google Scholar
  26. Levin, D. E. & Bishop, M. Aputative protein kinase gene (kin1+) is important for growth polarity in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 87, 8272–8276 (1990).
    Article ADS CAS Google Scholar
  27. Barbet, N., Muriel, W. J. & Carr, A. M. Versatile shuttle vectors and genomic libraries for use with Schizosaccharomyces pombe. Gene 114, 59–66 (1992).
    Article CAS Google Scholar
  28. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).
    Article CAS Google Scholar

Download references