Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins (original) (raw)
References
Lepre, C. A. & Lippard, S. J. in Nucleic Acids and Molecular Biology(eds Eckstein, F. & Lilley, D. M. J.) 9–38 (Springer, Heidelberg, 1990). Book Google Scholar
Zlatanova, J., Yaneva, J. & Leuba, S. H. Proteins that specifically recognize cisplatin-damaged DNA: aclue to anticancer activity of cisplatin. FASEB J.12, 791–799 (1998). ArticleCAS Google Scholar
Zamble, D. B. & Lippard, S. J. Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem. Sci.20, 435–439 (1995). ArticleCAS Google Scholar
Zhai, X., Beckmann, H., Jantzen, H.-M. & Essigmann, J. M. Cisplatin–DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry37, 16307–16315 (1998). ArticleCAS Google Scholar
Bustin, M. & Reeves, R. in Progr. Nucleic Acid Res. Mol. Biol.(eds Cohn, W. E. & Moldave, K.) 35–100 (Academic, San Diego, 1996). Google Scholar
Read, C. M. et al. . in Nucleic Acids and Molecular Biology(eds Eckstein, F. & Lilley, D. M. J.) 222–250 (Springer, Berlin, 1995). Book Google Scholar
Dunham, S. U. & Lippard, S. J. DNA sequence context and protein composition modulate HMG-domain protein recognition of cisplatin-modified DNA. Biochemistry36, 11428–11436 (1997). ArticleCAS Google Scholar
Chow, C. S., Barnes, C. M. & Lippard, S. J. Asingle HMG domain in high-mobility group 1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct. Biochemistry34, 2956–2964 (1995). ArticleCAS Google Scholar
Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY–DNA complex. Cell81, 705–714 (1995). ArticleCAS Google Scholar
Love, J. J. et al. . Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature376, 791–795 (1995). ArticleADSCAS Google Scholar
Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn.6, 63–91 (1988). ArticleCAS Google Scholar
Dunham, S. U., Dunham, S. U., Turner, C. J. & Lippard, S. J. Solution structure of a DNA duplex containing a nitroxide spin-labeled platinum d(GpG) intrastrand cross-link refined with NMR-derived long-range electron–proton distance restraints. J. Am. Chem. Soc.120, 5395–5406 (1998). ArticleCAS Google Scholar
Gelasco, A. & Lippard, S. J. NMR solution structure of a DNA dodecamer duplex containing a cis -diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry37, 9230–9239 (1998). ArticleCAS Google Scholar
Takahara, P. M., Frederick, C. A. & Lippard, S. J. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J. Am. Chem. Soc.118, 12309–12321 (1996). ArticleCAS Google Scholar
Hardman, C. H. et al. . Structure of the A-domain of HMG1 and its interaction with DNA as studied byheteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry34, 16596–16607 (1995). ArticleCAS Google Scholar
Broadhurst, R. W., Hardman, C. H., Thomas, J. O. & Laue, E. D. Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy. Biochemistry34, 16608–16617 (1995). ArticleCAS Google Scholar
Sherman, S. E., Gibson, D., Wang, A. H.-J. & Lippard, S. J. Crystal and molecular structure of cis -[Pt(NH3)2{d(pGpG)}], the principal adduct formed by cis -diamminedichloroplatinum(II) with DNA. J. Am. Chem. Soc.110, 7368–7381 (1988). ArticleCAS Google Scholar
Dickerson, R. E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res.26, 1906–1926 (1998). ArticleCAS Google Scholar
Yang, D., van Boom, S. S. G. E., Reedijk, J., van Boom, J. H. & Wang, A. H.-J. Structure and isomerization of an intrastrand cisplatin-corsslinked octamer DNA duplex by NMR analysis. Biochemistry34, 12912–12920 (1995). ArticleCAS Google Scholar
Teo, S.-H., Grasser, K. D. & Thomas, J. O. Differences in the DNA-binding properties of the HMG-box domains of HMG1 and the sex-determining factor SRY. Eur. J. Biochem.230, 943–950 (1995). ArticleCAS Google Scholar
Weiss, M. A., Ukiyama, E. & King, C.-Y. The SRY cantilever motif discriminates between sequence- and structure-specific DNA recognition: alanine mutagenesis of an HMG box. J. Biomol. Struct. Dyn.15, 177–184 (1997). ArticleCAS Google Scholar
Berners-Price, S. J. et al. . Structural transitions of a GG-platinated DNA duplex induced by pH, temperature and box A of high-mobility group protein 1. Eur. J. Biochem.243, 782–791 (1997). ArticleCAS Google Scholar
Balaeff, A., Churchill, M. E. A. & Schulten, K. Structure prediction of a complex between the chromosomal protein HMG-D and DNA. Proteins30, 113–135 (1998). ArticleCAS Google Scholar
Yoshioka, K. et al. . Differences in DNA recognition and conformational change activity between boxes A and B in HMG2 protein. Biochemistry38, 589–595 (1999). ArticleCAS Google Scholar
Falciola, L., Murchie, A. I. H., Lilley, D. M. J. & Bianchi, M. E. Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. Nucleic Acids Res.22, 285–292 (1994). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Rould, M. A. Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Methods Enzymol.276, 461–472 (1997). ArticleCAS Google Scholar
Collaborative Computational Project number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).
Brünger, A. T. XPLOR Version 3.1, A system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut, 1992).
Baxevanis, A. D. & Landsman, D. The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res.23, 1604–1613 (1995). ArticleCAS Google Scholar