A record of atmospheric halocarbons during the twentieth century from polar firn air (original) (raw)
References
Montzka, S. A. et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion. Science272, 1318–1322 (1996). ArticleADSCAS Google Scholar
Cunnold, D. M. et al. GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994. J. Geophys. Res.102, 1259–1269 (1997). ArticleADSCAS Google Scholar
Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: Chlorine atom catalyzed destruction of ozone. Nature249, 810–814 (1974). ArticleADSCAS Google Scholar
Miller, J. M. Summary Report 1972(Rep. No. 1, Geophysical Monitoring for Climate Change, National Oceanic and Atmospheric Administration, Boulder, CO, 1974). Google Scholar
Prinn, R. G. et al. The Atmospheric Lifetime Experiment 1. Introduction, instrumentation, and overview. J. Geophys. Res. C88, 8353 –8367 (1983). ArticleADSCAS Google Scholar
Gamlen, P. H., Lane, B. C., Midgley, P. M. & Steed, J. M. The production and release to the atmosphere of CCl3F and CCl 2F2(chlorofluorocarbons CFC-11 and CFC-12). Atmos. Environ.20, 1077–1085 ( 1986). ArticleADSCAS Google Scholar
Fisher, D. A. & Midgley, P. M. Uncertainties in the calculation of atmospheric releases of chlorofluorocarbons. J. Geophys. Res.99, 16643–16650 ( 1994). ArticleADSCAS Google Scholar
Khalil, M. A. K. & Rasmussen, R. A. Atmospheric methyl chloride. Atmos. Environ.33, 1305 –1321 (1999). ArticleADSCAS Google Scholar
Butler, J. H. Scientific uncertainties in the budget of atmospheric methyl bromide. Atmos. Environ.30, R1–R3 (1996). Article Google Scholar
Penkett, S. A. et al. in Scientific Assessment of Ozone Depletion: 1994(eds Albritton, D. L., Watson, R. T. &Aucamp, P. J.) Ch. 10 (World Meteorological Organization, Geneva, Switzerland, 1995). Google Scholar
Lovelock, J. E., Maggs, R. J. & Wade, R. J. Halogenated hydrocarbons in and over the Atlantic. Nature241, 194–196 (1973). ArticleADSCAS Google Scholar
Isidorov, V. A., Zenkevich, I. G. & Ioffe, B. V. Volatile organic compounds in solfataric gases. J. Atmos. Chem.10, 329–340 (1990). ArticleCAS Google Scholar
Schwander, J. et al. The age of the air in the firn and the ice at Summit, Greenland. J. Geophys. Res.98, 2831– 2838 (1993). ArticleADSCAS Google Scholar
Sturges, W. T., Penkett, S. A., Barnola, J.-M. & Chappellaz, J. A. in Chemical Exchange between the Atmosphere and Polar Snow(eds Wolff, E. W. &Bales, R. C.) 617–622 (Springer, New York, 1995). Google Scholar
Battle, M. et al. Histories of atmospheric gases from the firn at South Pole. Nature383, 231–235 (1996). ArticleADSCAS Google Scholar
Elkins, J. W. in Summary Report 1994–1995(eds Hofmann, D. J., Peterson, J. T. &Rosson, R. M.) 84–111 (Rep. No. 23, Climate Monitoring and Diagnostics Lab., US Dept of Commerce, Boulder, 1996). Google Scholar
Butler, J. H. et al. in Summary Report 1996–1997(eds Hofmann, D. J., Peterson, J. T. &Rosson, R. M.) 91–121 (Rep. No. 24, Climate Monitoring and Diagnostics Lab., US Dept of Commerce, Boulder, 1998). Google Scholar
Schwander, J., Stauffer, B. & Sigg, A. Air mixing in firn and the age of the air at pore close-off. Ann. Glaciol.10, 141– 145 (1988). ArticleADS Google Scholar
Bender, M. L., Sowers, T., Barnola, J.-M. & Chappeallaz, J. Changes in the O2/N2ratio of the atmosphere during recent decades reflected in the composition of air in the firn at Vostok Station, Antarctica. Geophys. Res. Lett.21, 189– 192 (1994). ArticleADSCAS Google Scholar
Craig, H., Horibe, YT. & Sowers, T. Gravitational separation of gases and isotopes in polar ice caps. Science242, 1675– 1678 (1988). ArticleADSCAS Google Scholar
Sowers, T., Bender, M. & Reynaud, D. Elemental and isotopic composition of occluded O 2and N2in polar ice. J. Geophys. Res.94, 5137–5150 (1989). ArticleADSCAS Google Scholar
Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J.-M. & Mazaudier, D. Physical and climatic parameters which influence the air content in polar ice. Earth Planet. Sci. Lett.112, 1–13 ( 1992). ArticleADS Google Scholar
Lovelock, J. E. Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature267, 32 (1977 ). ArticleADSCAS Google Scholar
Singh, H. B., Salas, L. J., Shigeishi, H. & Scribner, E. Atmospheric halocarbons, hydrocarbons, and sulfur hexafluoride: Global distributions, sources, and sinks. Science203, 899– 903 (1979). ArticleADSCAS Google Scholar
Rasmussen, R. A. & Khalil, M. A. K. Atmospheric trace gases: Trends and distributions over the last decade. Science232, 1623–1624 ( 1986). ArticleADSCAS Google Scholar
Fraser, P. et al. Lifetime and emission estimates of 1,1,2-trichlorotrifluorethane (CFC-113) from daily global background observations June 1982 June 1994. J. Geophys. Res.101, 12585–12599 (1996). ArticleADSCAS Google Scholar
Maiss, M. & Levin, I. Global increase of SF6observed in the atmosphere. Geophys. Res. Lett.21, 569–572 (1994). ArticleADSCAS Google Scholar
Singh, H. B., Salas, L., Shigeishi, H. & Crawford, A. Urban-nonurban relationships of halocarbons, SF6, N2O, and other atmospheric trace constituents. Atmos. Environ.11, 819–828 (1977). ArticleADSCAS Google Scholar
Ehhalt, D. H. et al. in Report of the International Ozone Trends Panel, 1988(ed. Watson, R. D.) 543–570 (Rep. No. 18, United Nations Environmental Programme, Nairobi, 1988). Google Scholar
Prinn, R. G. et al. Atmospheric trends and lifetime of trichlorethane and global average hydroxyl radical concentrations based on 1978–1994 ALE/GAGE measurements. Science269, 187– 192 (1995). ArticleADSCAS Google Scholar
Wingenter, O. W., Wang, C. J.-L., Blake, D. R. & Rowland, F. S. Seasonal variation of tropospheric methyl bromide concentrations: Constraints on anthropogenic input. Geophys. Res. Lett.25, 2797–2801 (1998). ArticleADSCAS Google Scholar
Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res.101, 4115–4128 (1996). ArticleADSCAS Google Scholar
McCulloch, A. Global production and emissions of bromochlorodifluoromethane and bromotrifluoromethane (halons 1211 and 1301). Atmos. Environ. A26, 1325–1329 (1992). ArticleADS Google Scholar
Geller, L. S. et al. Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. Lett.24, 675–678 (1997). ArticleADSCAS Google Scholar
Elkins, J. W. et al. Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12. Nature364, 780– 783 (1993). ArticleADSCAS Google Scholar
Butler, J. H., Montzka, S. A., Clarke, A. D., Lobert, J. M. & Elkins, J. W. Growth and distribution of halons in the atmosphere. J. Geophys. Res.103, 1503–1511 (1998). ArticleADSCAS Google Scholar
Sanhueza, E., Fraser, P. J. & Zander, R. J. in Scientific Assessment of Ozone Depletion: 1994 (eds Albritton, D. A., Watson, R. T. &Aucamp, P. J.) 2.1– 2.38 (World Meteorological Organization, Geneva, 1995 ). Google Scholar
Krysell, M. & Wallace, D. W. R. Arctic Ocean ventilation studied with a suite of anthropogenic halocarbon tracers. Science242, 746–749 (1988). ArticleADSCAS Google Scholar
Walker, S. J., Weiss, R. F. & Salameh, P. K. Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride. J. Geophys. Res.(submitted).
Galbally, I. E. Man-made carbon tetrachloride in the atmosphere. Science193, 573–576 (1976). ArticleADSCAS Google Scholar
Moore, R. M., Groszko, W. & Niven, S. J. Ocean-atmosphere exchange of methyl chloride: Results from NW Atlantic and Pacific Ocean studies. J. Geophys. Res.101, 28529–28538 (1996). ArticleADSCAS Google Scholar
Rudolph, J., Khedim, A., Koppmann, R. & Bonsang, B. Field study of the emissions of methyl chloride and other halocarbons from biomass burning in western Africa. J. Atmos. Chem.22, 67 –80 (1995). ArticleCAS Google Scholar
Harper, D. B. Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature315, 55–57 (1985). ArticleADSCAS Google Scholar
Report of the Ninth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal)(United Nations Environmental Programme, New York, 1997).
Butler, J. & Rodrigues, J. in The Methyl Bromide Issue(eds Bell, C., Price, N. &Chakrabarti, B.) 27–90 (Wiley and Sons, London, 1996). Google Scholar
Yvon-Lewis, S. A. & Butler, J. H. The potential effect of oceanic biological degradation on the lifetime of atmospheric CH 3Br. Geophys. Res. Lett.24, 1227– 1230 (1997). ArticleADSCAS Google Scholar
Rasmussen, R. A. & Khalil, M. Gaseous bromine in the arctic and arctic haze. Geophys. Res. Lett.11, 433–436 (1984). ArticleADSCAS Google Scholar
Wilke, C. R. & Lee, C. Y. Estimation of diffusion coefficients for gases and vapors. Ind. Eng. Chem.47, 1253–1257 (1955). ArticleCAS Google Scholar
Prinn, R. G. et al. The Atmospheric Lifetime Experiment 5. Results for CH 3CCl3based on three years of data. J. Geophys. Res. C88, 8415–8426 ( 1983). ArticleADSCAS Google Scholar
Prinn, R. et al. Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data from 1978–1990. J. Geophys. Res. D97, 2445– 2461 (1992). ArticleADSCAS Google Scholar
Khalil, M. A. K., Rasmussen, R. A. & Gunawardena, R. Atmospheric methyl bromide: Trends and global mass balance. J. Geophys. Res. D98, 2887– 2896 (1993). ArticleADSCAS Google Scholar