The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein (original) (raw)
References
Kosik, K. S., Qiu, W. Q. & Greenberg, S. Cellular signaling pathways and cytoskeletal organization. Ann. NY Acad. Sci.777, 114– 120 (1996). ArticleADSCAS Google Scholar
Spillantini, M. G. & Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci.21, 428–433 (1998). ArticleCAS Google Scholar
Lee, V. M., Balin, B. J., Otvos, L. J & Trojanowski, J. Q. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science251, 675– 678 (1991). ArticleADSCAS Google Scholar
Goedert, M., Spillantini, M. G., Cairns, N. J. & Crowther, R. A. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron.8, 159 –168 (1992). ArticleCAS Google Scholar
Greenberg, S. G., Davies, P., Schein, J. D. & Binder, L. I. Hydrofluoric acid-treated tau PPHF proteins display the same biochemical properties as normal tau. J. Biol. Chem.267, 564– 569 (1992). CASPubMed Google Scholar
Bramblett, G. T. et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron10, 1089–1099 (1993). ArticleCAS Google Scholar
Yoshida, H. & Ihara, Y. Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau. J. Neurochem.61, 1183– 1186 (1993). ArticleCAS Google Scholar
Lu, K. P., Hanes, S. D. & Hunter, T. Ahuman peptidyl-prolyl isomerase essential for regulation of mitosis. Nature380, 544– 547 (1996). ArticleADSCAS Google Scholar
Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell89, 875–886 (1997). ArticleCAS Google Scholar
Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: A potential mitotic regulatory mechanism. Science278 , 1957–1960 (1997). ArticleADSCAS Google Scholar
Schutkowski, M. et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry37, 5566–5575 (1998). ArticleCAS Google Scholar
Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev.12, 706– 720 (1998). ArticleCAS Google Scholar
Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. Function of WW domains as phosphoserine or phosphothreonine-binding modules. Science283, 1325–1328 (1999). ArticleADSCAS Google Scholar
Lu, K. P. Phosphorylation-dependent prolyl isomerization: a novel cell cycle regulatory mechanism. Prog. Cell Cycle Res.(in the press).
Crenshaw, D. G., Yang, J., Means, A. R. & Kornbluth, S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J.17, 1315–1327 ( 1998). ArticleCAS Google Scholar
Illenberger, S. et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer's disease. Mol. Biol. Cell9, 1495–1512 (1998). ArticleCAS Google Scholar
Vincent, I., Rosado, M. & Davies, P. Mitotic mechanisms in Alzheimer's disease? J. Cell Biol.132, 413–425 (1996). ArticleCAS Google Scholar
Vincent, I., Jicha, G., Rosado, M. & Dickson, D. W. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J. Neurosci.17, 3588– 3598 (1997). ArticleCAS Google Scholar
Nagy, Z., Esiri, M. M. & Smith, A. D. Expression of cell division markers in the hippocampus in Alzheimer's disease and other neurodegenerative conditions. Acta Neuropathol. (Berl.)93, 294– 300 (1997). ArticleCAS Google Scholar
Kondratick, C. M. & Vandre, D. D. Alzheimer's disease neurofibrillary tangles contain mitosis-specific phosphoepitopes. J. Neurochem.67, 2405– 2416 (1996). ArticleCAS Google Scholar
Preuss, U. & Mandelkow, E. M. Mitotic phosphorylation of tau protein in neuronal cell lines resembles phosphorylation in Alzheimer's disease. Eur. J. Cell Biol.76, 176– 184 (1998). ArticleCAS Google Scholar
Vincent, I. J. & Davies, P. Aprotein kinase associated with paired helical filaments in Alzheimer disease. Proc. Natl Acad. Sci. USA89, 2878– 2882 (1992). ArticleADSCAS Google Scholar
Jicha, G. A. et al. Aconformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J. Neurochem.69, 2087–2095 ( 1997). ArticleCAS Google Scholar
Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature393, 702–705 (1998). ArticleADSCAS Google Scholar
Clark, L. N. et al. Pathogenic implications of mutations in the tau gene in palido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl Acad. Sci. USA95, 13103– 13107 (1998). ArticleADSCAS Google Scholar
Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA95, 7737–7741 (1998). ArticleADSCAS Google Scholar
Iqbal, K., Zaidi, T., Bancher, C. & Grundke-Iqbal, I. Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett.349, 104–108 (1994). ArticleCAS Google Scholar
Alonso, A. C., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc. Natl Acad. Sci. USA91, 5562–5566 (1994). ArticleADSCAS Google Scholar
Spillantini, M. G., Bird, T. D. & Ghetti, B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol.8, 387–402 (1998). ArticleCAS Google Scholar
Hong, M. et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science282, 1914 –1917 (1998). ArticleADSCAS Google Scholar